教案的编写需要考虑学生的学情和兴趣,以及教学资源的合理利用。教案的编写要充分考虑学生的学习特点和发展规律。小编为大家整理了一些优秀的教案范文,供大家学习和参考。
能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。
情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重点、难点:学生能够熟练的计算整数乘以分数
教学方法:师生共同归纳和推理
教学准备:教学参考书、教科书
教学过程:
教师出示教学板书,请学生计算下列分数加减运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。
同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?
学生同桌之间讨论,教师提问学生回答问题。
教师板书例题,让学生想一想如何计算?
学生列出算式3×=,学生同桌之间相互讨论,如何计算整数乘以分数?
教师提问学生说一说自己是怎样计算的?
(学生1:3×==;学生2:3×====……)
教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)
做课本2页涂一涂,算一算,2个的和是多少?
让学生熟练计算,教师及时纠正学生错误的计算方法。
做课本试一试1、2题。
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
3×==3×====
分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)
教学反思:
班级姓名小组小组评价。
学习目标:
1、结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。
2、通过独立思考、小组合作、展示质疑,培养观察推理的能力。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点;分数乘整数的简便算法。
难点:分数乘整数的算理。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘整数的意义,掌握分数乘整数的计算方法,能运用计算方法正确进行计算。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。
一、自主学习:
1、自学课本p8---p9页。
2、想一想,填一填。
1)、5+5+5+5=()×()表示()个()相加。
2)、1.2+1.2+1.2+1.2+1.2=()×()表示()个()相加。
3)、++=()×()表示()个()相加。
4)、×4改写成加法算式是()。
3、看图填空。
1)、
()+()+()=()。
()×()=()。
2)、
()+()+()+()=()。
()×()=()。
二、合作探究:新课标第一网。
小结:分数乘整数的意义:
例2、×5。
小结:分数乘整数的计算方法:
例3、6×=。
思考:你有什么技巧?
小结:分数乘整数的简便算法:
三、学以致用:
1、填空。
1)、分数乘整数,用分数的()和整数相乘的积作(),()不变。
2)、分数乘整数的意义与()意义相同,都是求的简便计算。
3)、×4表示()或表示()。
4)、4个的和是多少?用乘法计算可列式为()。
2、计算。
×4=3×=×8=。
3、列式计算。
1)、6个相加的和是多少?2)、的5倍是多少?
4、解决问题。
1)、一辆汽车每分钟行千米,这辆汽车每小时行驶多少千米?
2)、李师傅加工一个零件小时,加工24个零件需多少个小时?
5、附加题。
1)、计算。
×2=。
2)、把下面的加法算式改写成乘法算式。
(至2011上学期)
六年级数学学科教师:高春枝
学习
内容分数混合运算
学习
目
标1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
重难
点及
突破
措施教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
课前
准备
导学案设计个性化设计
预
习
学
案1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5
(2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5]
(4)[7+(5.78-3.12)]×(41.2―39)
自
主
乐
学
合
作
交
流1、学习例4
(1)读题,明确已知条件及问题,在小组内尝试说说自己的解题思路。
(2)根据每个同学的回答,小组合作归纳出两种思路:
a、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。
b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(3)独立列出综合算式后,先说说运算顺序,再进行计算。
2、巩固练习:p34“做一做”
(1)独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1、2、3、4题
检
测
反
馈
课
外
拓
展作业:练习九第5--9题
教
学
反
思
审核人:
第一课时两位数乘两位数(不进位)。
教学内容:教科书第63页例1及做一做,练习十五。
教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数不进位的乘法。在学习活动中感受数学与生活的密切联系。
重点难点:掌握笔算方法并正确计算;解决乘的顺序和第二部分积的书写位置问题。
教具准备:例2主题图。
教学过程:
一、复习。
1、口算。
52×1043×30=12×40=31×20=17×20=21×30=。
2、笔算并说出计算过程。
41×7=。
二、新课。
1、教学例2。
出示例2的主题图,让学生说一说,这幅图所展示的情境是什么。(小红的妈妈带着小红去书店买书,小红要买一套12本,每本24元的书,她在想一共要付多少钱。)。
老师组织学生进行讨论,然后展示不同的计算过程和结果。
例:24×12=24024×10=24024×2=28240×28=288。
有些学生会想到把12看成10和2的和,先用24×10,再用24×2,然后把两次乘得的结果相加。
有些学生会想到用笔算乘法。先让学生说他是如何写的,老师家以指导。
老师在指导分析过程中把每步板书,强调每步难点。
例1:24×12=288(24×10=24024×2=48240+48=288)。
24。
×12。
4824×2的积。
2424×10的积。
288(个位的0可不写)。
在总结过程中提问:
(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?
(2)笔算中乘了几层,为什么?乘得的结果怎么样?(乘了两层,因为第二因数是两位数,2和24乘完后,1和24还要乘,把两层乘得的结果相加。)。
(3)十位上的1和24乘完后“4”为什么和十位对齐?(因为十位上的1和4相乘乘得的结果是4个十,所以要和十位对齐,个位的0可以省略不写。)。
教师总结完后出示课题,说明我们今天主要学习的是笔算两位数乘两位数的乘法,而且是不需要进位的。
2、指导学习完成“做一做”。
(1)让学生先做前4题,板演,并说出计算过程。
(2)后4题学生做完后,集体订正。
三、小结。
同学们,今天学习的是什么内容,应该注意什么?(今天我们学习的是两位数乘两位数不进位笔算乘法,应注意的是用十位上的数去乘时,乘得的末位数要和十位上的数对齐,也就是和个位乘得的积错开一位。)。
第二课时两位数笔算乘法(进位)。
教学内容:教科书第65页例2、做一做,练习十六第1、2题。
教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
教具准备:多媒体课件(有下围棋的录像或画面);
多个南瓜形算式卡片(每张上一个算式)。
教学过程:
一、提出问题。
呈现下围棋的录像或画面,介绍有关围棋赛的事例(或战绩)。
放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。
接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”
请学生说一说用什么方法解决这个问题,从而列出算式19×19。
二、探讨计算方法。
1.各组讨论:怎样计算19×19。
请把想出的计算方法写在纸上。
2.组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
3.师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!
三、练习。
1.尝试练习。
用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
2.完成练习十六第1题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
3.解决问题。
请学生独立完成练习十六第3、4题。
完成后,请学生向全班说一说,解决问题的过程和结果。
4.游戏。
贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。
让学生自由选择卡片,算对的就收获了这个南瓜。
完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。
四、总结。
1.请学生讨论笔算乘法时要注意什么问题,并交流。
2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
教学内容:
教材第26页的第3、4题及练习七的第2、3、5、6、7题。
教学目标:
1、通过复习分数乘法的应用题,进一步加深对“求一个数的几分之几是多少”的分数意义的理解。
2、引导学生准确地找到单位“1”,并能熟练地解答一步和二步的乘法应用题。
3、提高学生分析、解答分数应用题的能力。
教学重点:
引导学生找准单位“1”,分析应用题的数量关系。
教学难点:
让学生正确、独立地分析应用题的数量关系。
教学过程:
一、复习分数乘法应用题。
1、复习解答分数乘法应用题的步骤:
(1)找到题目中的分率句,确定单位“1”。
(2)根据题目中的数量关系,求出所要求的部分量。
2、p26第3题。
(1)学生独立审题,分析数量关系。
(2)分别找到两道题的单位“1”,并说说这两道题有何不同?
(3)根据题意分析数量关系,然后列式计算,全班讲评。
3、练习:练习七第6题。
二、复习倒数的知识。
1、复习倒数的意义:乘积是1的两个数互为倒数。
2、互为倒数的两个数有什么特征?(分子、分母的位置刚好颠倒位置)。
1的倒数是多少?
0有没有倒数?
3、复习写一个数的倒数的方法:交换原来分子和分母的位置(注意强调如果是整数要先把它写成分母为1的分数,然后在交换分子和分母的位置。)。
4、判断下面各题的错对,说明理由。
(1)是倒数。
(2)的倒数一定是。
(3)小数没有倒数。
5、练习:练习七第7题。
三、作业。
练习七第2、3、5题(学生独立列式计算,指名板演,讲评时让学生说清是怎样思考的)。
四、课堂小结。
通过复习,我们能正确分析“求一个数的几分之几是多少”的应用题的数量关系,可以熟练地求一个数的倒数。
各位评委各位老师大家好:
我今天说课的内容是:《分数乘法》。这节说课分五个环节进行,下面我就来说说第一个节。
一、说教材。
《分数乘法》是人教实验版六年制上册第二单元的分数乘法的第一课时的内容。这部分内容的学习是在学生已经学习了整数乘法的意义很分数加法计算的基础上进行的。在这个内容中,分数乘整数的意义和整数乘整数的意义相同,都是求几个相同加数的和的简便运算,只是这里的相同加数变成了分数,同时分数乘整数又是分数乘分数、分数乘加、乘减混合运算的基础上,因此必须使学生切实掌握好。基于以上原因,我确定了如下目标。知识目标:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。能力目标:培养迁移转化的能力。情感目标:培养学生尝试探究,合作学习的好习惯。为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算。教学难点:分数乘整数的计算方法。
二、说教法。
根据新课程理念,学生已有的知识,生活经验,结合教材的特点,我采用了以下的教学方法:
1.借助课件演示:帮助学生审题,理解题意。
2.尝试教学法:从主题图中获得信息,尝试自己探究,讨论解决。
三、说学法。
本节课的学习依据知识的迁移,应用转化的思想,通过学生尝试自主探究,把新知识转化为已经学习过的就知识,进一步了解知识之间的联系,适时点拨,激发学生主动探究的欲望。教师让学生尝试、观察、讨论、探究中获取知识,把课堂还给了学生,把学习的主动权交给了学生,体现了以学生为主体。
四、说教学流程。
合理安排教学流程是教学成功的关键。针对六年级学生的认知规律,我将安排以下几个步骤完成教学。
(一)复习引课。
12+12+12+12=2/7+2/7+2/7+=。
这两题可以让学生口读结果,他们的作用是要为新授环节做一个简单的铺垫。
(二)新知探究。
1.课件出示例1。
(1)孩子们请仔细读题,你理解这个题吗?试着来说一说。在学生分析题意的时候,随机点出线段图。再仔细的读读这个题,你会列式计算吗?试着做做。
(2)学生做的时候教师巡视、指导,找有不同想法的学生上黑板去做,绝大多数同学完成的情况下,老师在布置任务“同桌互相说说你们的想法”这样就可以保证所有学生至少有一种解决问题的方法。这时候情板演的同学将出做题的思路。
第一种++==。
第二种×3=++==?这里关键要剖析第二种方法,为什么可以用乘法,在此基础上师生共练两题,教师要做好板书的整理,而后得出分数乘整数的计算方法。整个新授过程,我让学生仔细想一想、试着做一做、同桌说一说、试着讲一讲。这样做可以让学生在尝试探究的过程中体验知识的形成过程。
2.二次尝试环节的设计意图,可以帮助学生及时掌握计算方法。
3.在教学例2时,因为有了例1的教学过程,学生基本有能力解决,所以我让学生直接动手做,但这一题特别应该注意的是让学生明白,能约分的要约分,再计算比较简便。
(三)教学例2后,就进入了巩固练习阶段,这节课的关键是计算方法和计算后能约分的要约分这两个要点。
(四)最后我进行了课堂小结,让学生谈这节课的收获,起到归纳知识,画龙点睛的作用。
五、说预设效果。
这节课的设计,主要通过突破难点达到突出重点的教学思路,教学难点的突破主要是给学生充足的尝试探究的空间,学生在探究中经历知识的形成过程,渗透了迁移类推的数学思想,使学生掌握学法。
班级姓名小组小组评价。
学习目标:
1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。
2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间。
的关系进行正确判断。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点:分数乘分数的简便算法。
难点:因数与积的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p11页。
2、计算:
3、填空:
1)、×6表示();
×表示();
2)、一根绳子长81米,剪去,还剩这根绳的,还剩()米,这里是把()看作单位“1”。
二、合作探究:
思考:你想到了几种计算方法,有什么技巧?
小结:分数乘分数的简便算法:
例2、比较大小。
思考;你发现了什么规律?
小结:当一个因数大于1时,积()另一个因数(0除外);
当一个因数小于1时,积()另一个因数(0除外);
当一个因数等于1时,积()另一个因数;
三、学以致用:
1、直接写出得。
2、
3、我能辩对错。(对的打“”,错的打“”)。
1)、一个数乘真分数,积小于这个数。()。
2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。()。
3)、x××x()。
4)、分数乘法的意义与整数乘法的意义相同。()。
5)、如果a×=b×,那么a大于b。()。
4、解决问题:
1)、一根电线第一次用去米,第二次用去的是第一次的,第二次用去多少米?
将本文的word文档下载到电脑,方便收藏和打印。
2.一台掘土机,每小时可以掘土480立方米,2小时25分可以掘土多少立方米?
3.有一块长方形木板,长。
1542米,宽米,求这块木板的周长和面积?
8、小明看一本小说,第一天看了全书的有144页,这两天共看了多少页?
11还多16页,第二天看了全书的少2页,全书86分数乘除法应用题:
3﹑水果店有苹果640千克,梨是苹果的4/5,有梨和苹果共有多少千克?
4﹑小刚有玻璃弹子20粒,小强的玻璃弹子是小刚的1/5,两人共有玻璃弹子多少粒?
7﹑一桶油6千克,第一次用去全部的2/9,第二次用去全部的1/3,还剩多少千克?
14﹑有一堆煤60吨,用去它的1/4还多5吨,用去多少吨?
15﹑有苹果2600千克,梨比苹果的7/13还少100千克,有梨多少千克?
16、工厂有女工234人,男工比女工的2/3还少32人,工厂有男工多少人?
18、洗衣机厂上月计划生产洗衣机1500台,结果超产1/15,超产了多少台?
19、水果店有橘子2600千克,苹果比橘子少9/20,苹果比橘子少多少千克?
教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。
教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。
教学过程:
(一)、导入。
1、说出下面各题算式所表示的意义,再口算各题。
1/2×2=2/5×3=2/3×1/2=3/4×5=。
2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。
母牛的头数是公牛的1/3,公牛头数的2/3和母牛相等。
母牛的头数相当于公牛头数的3/4,公牛的头数相当于母牛头数的1/2。
小组完成,集体订正。
(二)、教学实施。
1.板书:公牛有30头,母牛的头数相当于公牛的1/3,小牛的头数相当于木牛的2/5,小牛有多少头?(认真读题,弄清题意)。
2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:
公牛:|||||||||||。
30头。
母牛:||。
小牛:
头
3.分析数量关系:
4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:
30×1/3×2/5=。
根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。
(三)巩固练习。
完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。
(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。
教学反思:
第三课时求比一个数少几分之几的数是多少的实际问题。
教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。
教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。
教学过程:(一)导入。
板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的2/5。
(二)、教学实施。
1.根据以上两个条件,我们可以提出以下数学问题:
2.能用图表示豆油的部分吗?板书:
“1”
花生油占总桶数的。
||||||。
豆油?桶。
600桶。
3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的,求豆油的桶数也就是在求600的是多少,用乘法计算。
后者方法很容易理解,主要是从“总桶数-花生油的桶数=豆油的桶数”这个数量关系入手分析,也就是“和-一个量=另一个量”
“1”
原来:||||||||。
85分贝。
降低了。
现在:||||||||。
分贝。
根据线段图想到了什么?
3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)。
4.列式解答:
=70(分贝)=70(分贝)。
(三)、深化练习。
完成教材20页的“做一做”;完成练习五的第2、4、5、8、10题。
(四)课堂小结。
今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。
课后反思:
将本文的word文档下载到电脑,方便收藏和打印。
五年级孩子乐于探究,课始,从古代著作引入“为什么一尺长的木棍,每天截一半会永远截不完呢?”既激发孩子们的学习兴趣,调动了学生的探究欲望,又潜移默化的渗透了无限的思想。
2、相信学生,让孩子真正成为学习的主人。
前苏联教育家苏霍姆林斯基说:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈。”听了这一课,让我更深刻的理解了这句话。课上教师充分尊重孩子们说的权利和做的权利,开展了折一折,涂一涂,说一说,算一算等活动,给孩子们营造了一个宽松愉悦的学习氛围,教师大部分时间是以参与探索者的身份出现,与孩子们一起研究,师生之间体现了平等、和谐的伙伴关系。
3、数形结合,巧妙突破难点。
理解分数乘分数的意义,是帮助孩子们理解分数乘分数的计算原理,掌握计算方法的基础,也是学生理解的困难之处,如何有效的引导呢?教学中,教师安排了两次折一折,涂一涂的活动,化抽象为具体,充分利用图形语言的直观性这个特点,引导孩子们探索、理解分数乘分数的意义:即一个分数的几分之几是多少。注重将操作过程、图形语言和抽象的算式相结合,鼓励学生通过折纸活动把四分之三乘四分之一用图形表示出来,为孩子们发现和归纳出分数乘分数的计算方法铺好了道路。有了图形的帮助,孩子们就有了思考的拐杖,对分数乘分数的计算就不再是机械的操练和模仿了。
4、让孩子们在操作中学数学。
皮亚杰曾经指出:传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。可以说,加强动手操作是现代的数学教学与传统的数学教学的重要区别之一。只有让每个孩子都参与到操作活动中来,才能让孩子们了解知识的发生过程。教学中,教师给每个孩子都提供了动手的机会,留足了操作的时间,在折纸过程中,学生们不但体会到分数乘分数的意义,更感受到计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。这个过程对学生来说是很重要的,这个符号语言和图形语言相联系的过程,不仅解释了符号语言的意义,也直观形象的展示了分数乘分数的计算方法。
1、进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
2、进一步掌握已知一个数的几分之几是多少求这个数的应用题的解题思路。
3、进一步培养学生解决问题和分析、推理等思维能力,提高解题能力。
教学重难点。
进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
教学准备。
教学过程设计。
教学内容。
师生活动。
备注。
一、复习铺垫。
二、教学新课。
三、巩固练习。
四、课堂小结。
五、作业。
1、复习。
出示复习题(见幻灯)。
问:解答这道题是怎样想的?为什么列方程解?
2、揭示课题。
解答分数应用题,要先确定单位“1”,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。
1、教学例2。
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
(5)小结:这道题的解题思路是怎样的?
2、教学试一试。
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
3、小结。
问:通过上面的学习,你认为解答分数应用题该怎么去思考?
1、做练习十第6题。
2、做“练一练”
3、做练习十第9题。
问:列方程解是怎样想的?
练习使7、8、10。
课后感受。
例2比较简单,从学生的掌握情况来看,“试一试”稍有一些难度。所以本节课的重点放在了“试一试”的分析上。的确通过画线段图的分析,学生对此类题目有了一定的解题思路。
文档为doc格式。
在计算的过程中,能约分的要先约分,然后再乘。
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
一、设疑激趣:
1.下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2.计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3.出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1.出示例1,读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1.学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2.比较这两种方法,有什么联系和区别?
(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3.为什么可以用乘法计算?
(加法表示3个相加,因为加数相同,写成乘法更简便。)
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5.提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)
2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1.巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2.巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3.发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
(高效课堂模式教案定稿)
教案说明:本教案严格按照高效课堂模式进行编写,同时注重了培
优辅差及学困生的转化,注重学生的全面发展,教案环节齐全、内容详细,可以a4纸直接打印。
学科:;
任课班级:;
任课教师:;
年月日
个人说明:本教案还有许多不足之处,望广大网友谨慎下载。
第一单元小手艺展示
——分数乘法
本单元是在学生掌握了整数乘法,分数的意义和性质、分数加减法以及约分等知识的上进行学习的,是学习分数、比、分数四则混合运算及百分数的重要基础。本单元的主要学习内容有:整数和分数相乘,分数和分数相乘,分数连乘,“求一个数的几分之几是多少”的问题,倒数的意义和求一个数的倒数。
1.在解决具体问题的过程中,理解分数乘法的意义;掌握分数乘法的计算方法,能正确的进行计算;会解决“求一个数的几分之几是多少”的实际问题;理解倒数的意义;掌握求一个数倒数的方法。
2.经历分数乘法计算方法的探索过程,体会数形结合思想在解决数学问题中的作用,培养初步分析、比较和推理的能力。
3.在解决问题的过程中,感受分数乘法在现实中的应用,培养应用知识和兴趣。
重点:理解一个数和分数相乘的意义及“求一个数的几分之几是多少”用乘法计算。
难点:理解分数乘分数计算的算理。
进一步掌握分数数据的一般应用题的解题方法;进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。
教学重难点。
进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。
教学准备。
教学过程设计。
教学内容。
师生活动。
备注。
一、揭题。
二基本联系。
三、合练习。
四、堂小结。
五、作业。
这节课,我们复习分数乘法应用题,通过复习,我们要进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。
1、提问:解答分数应用题的关键是什么?
2、根据条件找单位1,说说数量关系式。
(题目见幻灯课件)。
3、解答应用题。
例1、从甲地到乙地公路长180千米,一辆汽车已经行了全程的,已经行了多少千米?
问:这道题可以怎样想?为什么用乘法算?
1、对比练习。
做复习题第9题。
问:这两题有什么相同的地方和不同的地方?
在解法上有什么相同的地方?
2、做复习第10题。
让学生说说是怎么想的?
3、做复习第11题。
4、做复习第12题。
讨论:有什么办法知道哪一辆车离中点近一些?
复习第7、8题。
课后感受。
要让学生学会想到有困难时可借助线段图帮助理解。
授课日期9月23日
文档为doc格式。
2.渗透对应思想.。
理解应用题中的单位“1”和问题的关系.。
1.理解“求一个数的几分之几是多少”的应用题的解题方法.。
2.正确灵活的判断单位“1”.。
一、复习、质疑、引新。
1.说出、、米的意义.。
2.列式计算。
20的是多少?6的是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘。
法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)。
二、探索、质疑、悟理。
(一)教学例1(也可以结合学生的实际自编)。
学校买来100千克白菜,吃了,吃了多少千克?
1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.。
2.分析.。
教师提问:重点分析哪句话呢?“吃了”这句话是分率句.是什么意思呢?
(就是把100千克白菜平均分成5份,吃了这样的4份).。
3.画图.(演示课件:分数乘法应用题1)。
画图说明:
a.量在下,率在上,先画单位“1”
b.十份以里分份,十份以上画示意图.。
c.画图用尺子,用铅笔.。
4.尝试解答.。
解法一:用自己学过的整数乘法做。
(千克)。
解法二:
(二)巩固练习。
六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?
1.把哪个数量看作单位“1”?
2.为什么用乘法计算?
(三)教学例2。
例2.小林身高米,小强身高是小林的,小强身高多少米?
2.求参加合唱队有多少人实际上就是求米的是多少。
3.列式:(米)。
答:小强身高米.。
(四)变式练习。
小强身高米,小林身高是小强的倍,小林身高多少米?
三、归纳、总结。
1.今天所学题目为什么用乘法计算。
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?
共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。
从分率可入手分析。
四、训练、深化。
(一)先分析数量关系,再列式解答。
1.一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?
2.一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?
(二)提高题。
1.一桶油400千克,用去,用去多少千克?还剩多少千克?
2.一桶油400千克,用去吨,用去多少千克?还剩多少千克?
五、课后作业。
(一)修路队计划修路4千米,已经修了。修了多少千米?
(二)一头鲸长7米,头部长占。这头鲸的头部长多少米?
(三)成昆铁路全长1100千米,桥梁和隧道约占全长的。桥梁和隧道约长多少千米?
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。
师生共同归纳和推理
教学参考书、教科书
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)
二、课堂练习
学生做第10题,让学生计算一个分数的几分之几是多少?注意提醒学生及时约分。
学生做第11题,让学生先计算出分数乘法算式的得数再学会比较分数的大小。
学生做第13题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,注意提醒学生认清长度单位。
学生做第14题,教师注意让学生利用分数乘法学会解决生活中实际问题。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
练习二
1.根据例题制作的挂图、投影片或多媒体课件。
2.每个学生准备一张长15cm、宽10cm的长方形纸。
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)。
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)。
让学生计算,并说说怎样计算。
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)。
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20。
学生讨论交流汇报。
教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)。
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)。
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
1.通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2.发展学生的观察推理能力。
3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系。
1、在具体情境中探索并理解分数乘分数的意义;
2、探索并掌握分数乘分数的计算方法,并能正确计算;教学难点本课的难点让学生通过折纸来解决,这一动手活动让学生充分理解了分数乘法的算理,帮助学生推导分数乘分数的计算法则。
1、每人准备一条约10厘米长的纸条;
2、每人准备2张长方形的纸。
一、探索分数乘分数的意义和计算方法。
1、直接引入庄子这个故事,先让学生读一读教科书第7页的一段话。ppt出示。让学生紧接着思考这个问题“一尺之捶,日取其半,万世不竭”到底是什么意思。在学生理解了这句话的意思之后,提问:“庄子老人家这句话到底对不对呢?”“我们能不能来验证一下呢?”。
拿出一张纸条当作一尺之捶,同学们先把纸条对折了一次。师:“现在的一半我们可以用多少来表示啊?”生:“”师:剪去一半,还剩下多少?这时“”表示什么意思呢?剩下的占这张纸的“”用算式表示:1*1/2师:请同学们再把剩下的“”对折一下,再剪去一半(得到四分之一)谁能说说这又表示什么意思呢?”生“就是再取一半的意思”“是在原来一半的基础上再取一半”“就是的师重复:这部分表示的是二分之一的二分之一。师:“根据前面所学过的内容,你能用一个算式表示出剩下部分占这张纸的几分之几吗?”学生很快就写出了1/2×1/2。再引导学生认识这个乘法算式所表示的意义。师问:为什么用乘法计算?这个算式表示什么意思?得数是多少?学生列出算式后,引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。师再问:“如果我们按照庄子的说法那接下去该怎么求呢?”学生答“再乘1/2”得到1/4×1/2=1/8,如果再往后求还剩下多少,那就再乘1/2,“一直乘下去,永远也乘不尽”现在你们知道万世不竭的意思了吧。
2、折一折,涂一涂让学生拿出课前准备好的一张长方形纸,按照教科书的要求(ppt出示)折一折,涂一涂。讨论:
(2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?
学生独立完成,并列式汇报。
3、做一做:根据图示,想一想,列出算式,算出结果。
1/2×1/4=1/2×3/4=。
二、讨论小结。
三、巩固练习:
1、p7做一做。
2、p8试一试:强调,能约分的要先约分。
3、提高练习:
(三)1*1/2=1/21的1/2是多少?
3、能正确运用“先约分再计算”的方法进行计算。
能正确运用“先约分再计算”的方法进行计算。
2、请大家想办法解决问题,先自己想一想,没有思路的同学可以同桌交流,也可以看一看书上是怎么解决的。
3、 组织全班交流。 师生一起来分享交流过程。对学生提出的想法,师可以这样提问:你列的这个算式表示什么意义呢?对这个算法,你是怎么理解的,别的同学还有什么问题吗? 教师在学生讨论的过程中,把加法的板书和乘法的.板书有机的结合起来。并让学生理解求几个相同分数的和用乘法计算。
4、练一练:教科书第2页“涂一涂,算一算”。 学生独立完成后,让学生说说自己的思路。 讨论:你能用自己的语言说一说整数乘分数的计算方法吗? 小结:分数与整数想乘,用分数的分子和整数的乘积作分子,分母不变。 练习:教科书“试一试”第1、2题。
5、探讨“先约分再计算”的方法。
出示 6x5/9。让学生独立完成,指名板演。 学生可能出现两种计算方法,如果没有方法二,教师可指导学生看书得到。 教师引导学生比较两种算法,得出“先约分再计算”的方法比较简便。
练习:
(1)教科书“练一练”第1题。
(2)计算
1、教科书第4页“练一练”第2、3、4、题。 学生先独立完成,指名板演,在集体讲评。
3、教科书第4页“数学故事”。 先让学生说说,你从每幅图中得到了哪些信息?如何解决图中提出的问题。
1.理解分数乘整数的意义。
2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。
使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。
情感态度与价值观
1.感受数学与实际生活之间的联系,激发学习兴趣。
2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。
理解分数乘整数的意义,探究计算法则。
正确计算及约分方法。
一、以旧引新,唤醒认知
(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)
(二)口答
(三)感受分数乘整数的意义
21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。
二、出示问题,探索新知
1、自主学习红点1。
(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的布条?指名口头列式。
(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。
(3)交流、质疑。
(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)
2、自主学习红点2。
(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。
(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。
3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)
三、分层练习,强化认知 .巩固分数乘整数的意义
1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。
2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。
3、明辨是非。
4、结合实际,解决问题。
四、总结
本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。
教学内容:
教学目标:
1、力量目标:能依据解决问题的需要,探究有关的数学信息,进展初步的分数乘法的力量。
2、学问目标:学习分数乘以分数的计算方法,学生能够娴熟精确的计算出一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的亲密联系,培育学习数学的良好兴趣。
重点难点:
学生能够娴熟的计算出分数乘以分数的'结果。
教学方法:
师生共同归纳和推理。
教学预备:
教学参考书、教科书。
教学过程:
教师出示教学板书,请学生计算以下分数乘法运算题。
教师:来回巡察学生的做题状况,并提问学生说说自己如何计算的?
学生查找完毕,纷纷举手预备回答下列问题。
教师提问学生回答下列问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)。
学生做第2题,留意让学生体验分数相乘的积于每一个乘数的关系。
学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。
学生做第4题,让学生能够学会比拟的和占整体1的大小。
学生做第5题,教师留意让学生整体的几分之几是多少?
学生做第6题,让学生留意区分不同标准的几分之几是多少;占整体的几分之几。
学生做第7题,教师留意让学生利用分数乘法学会解决生活中实际问题。
第8题,学生依据学过的分数乘法学问,辨别一下唐僧分西瓜是否公正。
同学们,这一节课你学到了哪些学问?(提问学生答复)。
板书设计:
是整个操场1的,是整个操场1的。
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。
2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。
3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
会计算分数混合运算,能利用乘法的运算定律进行简便运算。
根据题目特点,灵活地运用定律进行简便计算。
一、复习导入。
1、提问:整数混全运算顺序是怎么样的?
预设:先算乘、除法,再算加、减法。
2、追问:遇到有括号的题该怎么来计算?
预设:有括号的'要先算小括号里面的,再算中括号里面的。
3、计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。
1/23+2/5。
68-54。
1/2(3/6-1/4)。
二、探索新知。
1、向学生说明:分数混合运算的运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
1/33/5+11-5/721/25学生独立完成,小组内订正。
2、分数混合运算。
出示例题6:一个画框,长米,宽米,做这个画框要多长的木条?
3、学生读题,理解题意。已知长方形画框的长是45m,宽是12m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。
4、学生独立列式或启发自学,交流收获。
教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?
(1)请学生自学教材第9页的内容。
(2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。
5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?