找质数教案
文件夹
教案包括教学内容、教学方法、教学步骤等,是教师教学的指导依据。在编写教案时,要合理安排教学资源和教材使用。下面是一些优秀教案的案例,供大家学习参考。
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断的能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
教学重点:理解质数和合数的意义。
教学难点:判断一个数是质数还是合数的方法。
教具:多媒体课件。
教学过程:
一、准备复习,创设情境。
1、求7和10的约数。
2、25有几个约数?
二、探究发现,理解新知。
(一)教学例1。
1、出示例1,写出下面每个数所有的约数(1~12)。
(1)先小组合作完成例一,分别填出每个数的所有的约数,并指出各有几个约数。
(2)例1反馈。
(3)同学们观察一下这些数约数的特点:
思考:在自然数范围内,按照每个数的约数个数的特点进行分类,可以分为哪几类?
先独立分类,再小组交流。
(4)学生汇报分类情况。
2、比较每类数约数的特点,教学质数与合数的定义。
(1)先观察有2个约数的数。
谁能发现,它们的约数有什么特点呢?
归纳特点,给出质数的定义。
(2)第三种类型的数与质数的约数比较,又有什么不同?
概括合数的定义。
(3)1既不是质数,也不是合数。
(4)举出质数的例子?
(5)举出合数的例子。
3、自然数按照每个数的约数的多少,又可以怎样分类?
(二)教学例2。
1、出示例2。判断下面各数,哪些是质数,哪些是合数?
17、22、29、35、37、87。
(1)同桌先交流一下,再汇报。
(2)37为什么是质数?87为什么是合数?
(3)小结。
(三)看书质疑。
(四)游戏。
(五)出示100以内质数表。学生练习记质数。
三、巩固练习,发展提高。
1、在自然数1~20中:
(1)奇数有————,偶数有————;
(2)质数有————,合数有————。
2、下面的判断对吗?
(1)所有的奇数都是质数。()。
(2)所有的偶数都是合数。()。
(3)在自然数中,除了质数都是合数。()。
(4)一个合数,至少有3个约数。()。
3、猜一猜,老师的电话号码是多少。
四、总结。(略)。
五、作业:62页1~2。1。
教学目标:
1数形结合理解质数和合数的意义,能找出百以内的质数,熟悉20以内的8个质数。
2在探索质数与合数的特征的过程中,体会观察、分析、归纳、猜想、验证等探索方法。
3培养观察、比较、概括和判断的能力;获得探索问题成功的体验。
教学重点:质数和合数的意义。
教学难点:在数学活动中能自主探索质数和合数的特征。
教学过程:
活动一:
拼一拼。
1、小竞赛激趣:上节课我们用12个小正方形拼出了3个不同的长方形,以四人小组为单位比比快速拼出来。(教师巡视,及时了解学情)。
2、启发思考:如果小正方形的个数越多,那拼出的长方形的个数-----,你觉得会怎么样?你们说是――“越多”(不作评价,让学生充分思考。)。
3、初步探究:独立尝试研究一下几个小正方形拼长方形的情况。
(1)用2、3……11个小正方形分别可以拼成几种长方形?边拼边填写表格。
(2)观察表中各数的因数,你有什么发现?
(3)结合发现,将2~12各数分为两类,说一说这两类数分别有什么特点。
根据回答板书。
a:2,3,5,7,11,…。
b:4,6,8,9,10,12…。
4、能被再次研究,在分类中认识质数和合数,
(1)小组讨论:a组数有什么特点?(只有1和它本身两个因数)人人都验证一下。
(2)那么b组数有什么共同特征?(除了只有1和它本身两个因数外还有别的因数)。
象这样的数你还能说出几个?(个别学生回答,其他学生判断)。
5、这两组数各有特征,也各有自己特别的名称,快找找看(板书后全班齐读)。
6、你能说说什么样的数叫质数,什么样的数叫合数吗?(组内交流,全班交流)。
7、判断:哪些是质数?哪些是合数?并说出理由。
17212936197。
师:1为什么不是质数?(因为它只有一个因数。)质数应该有几个因数?(2个)。
活动二:
玩中练。
1、快速记忆:20以内的8个质数。
2、自我介绍。
自我介绍:根据自己的学号,请说出这个数的`特性,能说多少就说多少。(先示范,后试说,再同桌互说)。
如:我是1号,1既是奇数,又是最小的自然数,它既不是质数也不是合数。
3、猜电话号码。(从左边起)。
第一位和第二位相同:比最小的合数多1。
第三位和第五位相同:比1小的自然数。
第四位和第六位相同:是最小的合数。
第七位:是10以内最大的质数。
活动三:
小结与质疑。
教学目标:
(1)经历“求因数—找规律—探究归纳—应用”等数学活动,发现并掌握质数和合数的特征,并能运用其特征判别质数和合数。
(2)在参与探索的过程中,发展观察、比较、分析、概括、推理能力,初步体会分类归纳的数学方法和数学思想。
(3)体验数学“再创造”的乐趣,发展数学意识和数学品质。
教学难点:准确判断一个数是质数还是合数。
教学关键:发现质数和合数的因数特点。
教学准备:课件、展台、学生练习卡。
预习提示:
(一)回顾旧知。
1.非0的自然数按是不是2的倍数作为标准进行分类,可以分为( )数和( )数。
(二)尝试探究。
1.根据前面研究数的经验,选择一组数进行研究(如:1——20各数;20——25各数;100——200各数;200——400各数)。
2.写出这组数中各数的因数,并根据它们所含因数个数的情况进行分类。
(三)在研究的过程中你还有什么困惑?
教学过程:
一、复习旧知,为“再创造”作好铺垫。
生:可以分为两类:奇数和偶数。
师:我们是怎样研究2、3、5的倍数特征的?
生1:我们学习2的倍数的特征时,是先写出几个数,然后再来研究它们个位上数的特点,然后发现规律。
生2:我们学习5的倍数的特征时,是先找出5的倍数,然后再来研究它们的共同特点。
生3:我们研究2、3、5的倍数特征时,都是先写出一些数,然后再来研究它们的特点。
(板书课题:质数与合数)。
生2:如果选择的数太多,比如找100——200的每个数的因数,研究起来太麻烦了。
生3:选择的数太大,研究起来也比较麻烦。
生4:我看书上让我们找1——20各数的因数,我就用这组数了。
师:同学们的想法是对的,我们在研究数的时候,一般都要先从较小的一段数入手研究。
二、合作探究,经历“再创造”的过程。
师:通过课前预习,你解决了哪些问题?
生1:我知道了什么叫质数?什么叫合数?
生2:我知道一个数究竟是质数还是合数,与它所含因数的个数有关。
……。
生1:我想知道怎样才能快速判断出一个数是质数还是合数?
生2:这两种数与我们前面学的知识有什么关系?
生3:为什么说1既不是质数也不是合数?
生4:0是什么数?
生5:有没有最大的质数?
……。
课件出示小组合作学习提示:
(2)举例说明,怎样判断一个数是质数还是合数?
(3)通过本节课的学习,你们觉得自然数还可以怎样分类?
师:请小组长组织本组成员有效交流,看看你们能否达成共识,并进行合理分工,一会儿展示你们的学习成果。
学生进行小组合作学习,教师巡视了解,融入其中。
三、展示交流,体验“再创造”的快乐。
师:各小组在小组长的带领下都完成了学习任务,接下来我们要展示一下大家的学习成果。一直以来大家的汇报交流都很好,很有成效,希望同学们今天也不要紧张,积极交流。在交流时要认真倾听别人的发言,如果有不同的见解、不懂的问题、或者想要给他人补充,都可以主动提出来。
(第五小组先来汇报第(1)项学习内容)。
生1(边用展台展示1—20各数的因数及23页分类表格边汇报):我们写出了1—20各数的因数,把2、3、5、7、11、13、17、19这些数分为一类,它们只有两个因数,这样的数叫做质数;把4、6、8、9、10、12、14、15、16、18、20这些数分为一类,因为它们有两个以上因数,这样的数叫做合数;1自己一类,它既不是质数也不是合数。一个数,如果只有1和本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了1和本身还有别的因数,这样的数叫做合数。
生2板书:一个数,如果只有1和本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了1和本身还有别的因数,这样的数叫做合数。
生1:2的因数只有1和2,3的因数只有1和3,,5的因数只有1和它本身5,7的因数只有1和它本身7,这些数都只有1和它本身,所以它们就是质数。4的因数除了1和它本身还有别的因数,6除了1和它本身还有别的因数,所以它们是合数。
生5:我来补充,4的因数除了1和它本身4,还有因数2,6的因数除了1和它本身6,还有因数2和3,8的因数除了1和它本身8,还有因数2和4,所以它们都是合数。
生6:为什么说1既不是质数也不是合数?
生1:质数是只有1和它本身两个因数的数,合数是除了1和本身还有别的因数的数,而1只有一个因数,所以1既不是质数也不是合数。
生2:我来补充,因为1只有它本身1这一个因数,而质数有两个因数,合数有两个以上因数,所以1既不是质数也不是合数。
生7:1只有一个因数1,它既不符合质数定义也不符合合数定义。所以它既不是质数也不是合数。
(第三小组来汇报第(2)项学习内容。)。
生1:我们可以根据质数和合数的概念来判断一个数是质数还是合数,比如11只有1和它本身这两个因数,它就是质数。再比如15的因数有1、15、3、5,它除了1和15还有别的因数,它就是合数。
生2:我认为这样判断更简便,如果一个数只有两个因数就是质数,如果有三个或者三个以上因数,它就是合数。
生3:一个数,除了1和它本身以外,只要能再找出它的一个因数,这个数就是合数。比如12除了1和它本身这两个因数,它还是2的倍数,所以12是合数。
师:通过刚才的研究,我们发现:判断一个数是质数还是合数,关键是看什么?
生:除了1和它本身是否还具有其他因数。
师:一个数,如果只有1和它本身这两个因数,它就是——-。
生(齐):质数。
师:一个数,如果除了1和它本身外还含有其他的因数,它就是——。
生(齐):合数。
师:你能再说出几个质数吗?
生1:23是质数,因为13只有1和它本身这两个因数。
生2:29也是质数,因为17只有1和它本身这两个因数。
生3:31是质数。
……。
《互质数的意义和判断方法》是小学数学五年级上册第三单元《分数。
意义和性质》中的内容。本课时是在学生找一个数的因数基础上学习。
的。同时又为以后学习约分打下基础。教材中直接呈现了找互质数的。
意义和判断方法:教材采用的集合的方式呈现探索的过程。
二、说教学目标。
2、探索互质数的'意义和判断方法有哪几种情况。
三、说教学重、难点。
新课标鼓励学生通过思考、讨论、和交流,经历探索的过程,因。
此,确定教学重、难点为“探索互质数的意义和判断方法有哪几种情。
况
四、说教法与学法。
《数学课程标准》中指出:有效的教学活动不能单纯地依靠模仿。
与记忆,自主探索与合作交流是学习数学的重要方式。本节课在教学。
中主要采用了探究发现法、讨论归纳法,调动了学生高涨的学习情趣,
从中发现、提出并解决问题,互相合作、归纳总结了找最大公因数的。
方法,从而获得了探索的乐趣和成功的体验。
五、说教学流程。
《课程标准》强调从学生的生活经验和已有的知识出发,让学生。
亲身经历自主探索、合作交流、归纳总结的过程。根据这一认识,设。
计了如下教学环节。
一、复习求最大公因数的方法1、列举法2、筛选法。
3、分解质因数法求两个数最大公因数的特殊情况1、当两个数成倍。
数关系时,较小的数就是它们的最大公因数。2、当两个数的公因数。
只有1时,它们的最大公因数就是1.二、探索新知。
12、明确互质数的概念公因数只有1的两个数叫做互质数。如:5和。
多情况,不是只有两个质数才是互质数,合数和合数也可能成为互质。
数,如:15和16就是一对互质数。判断两个数是不是互质数,就看。
它们是不是只有公因数1.4、互质数的特殊情况(1)1和任意非0的。
(2)2和任意奇数都是互质数(3)相邻的两个自然数是互质数。(4)。
相邻的两个奇数的互质数。(5)不相同的两个质数是互质数。(6)。
一个合数与一个质数是互质数(合数是质数的倍数除外)5、
互质数和质数的区别质数是一类数,是只有1和它本身两个因数的。
数;互质数是对于两个数的关系而言,公因数只有1的两个数是互质。
数。
总结:公因数只有1的两个数叫做互质数。
教学目标:
2、培养学生细心观察全面概括、准确判断、自主探索、独立思考、合作交流的能力。
教学重点: 能准确判断一个数是质数还是合数、
教学难点: 找出100以内的质数、
教学过程:
下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数、
3和15 4和24 49和7 91和13
指名回答。
全班分两组探讨并写出1~20各数的因数。
1、观察各数因数的个数的特点。
2、板前填写师出示的表格。
只有一个因数
只有1和它本身两个因数
除了1和它本身还有别的因数
3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)
4、举例。
你能举一些质数的例子吗?
你能举一些合数的例子吗?
练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?
5、探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)
引导学生明确:1既不是质数也不是合数。
练习:自然数中除了质数就是合数吗?
1、想一想
生:质数,合数,1。
2、说一说。
既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?
引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。
老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
1、师引导学生找出30以内的质数。
提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)
(特殊记忆20以内的质数,因为它常用。)
2、小组探究100以内的质数。
3、汇报100以内的质数。师生共同整理100以内的质数表。
4、应用100以内质数表:
练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?
有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。
这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)
反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。
在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。
教学过程:
一、创设情景,生成问题。
(设计意图:从学生感兴趣的猜自然数还有没有其他分法入手,用一个“猜”拉近了学生与老师的距离,,让学生产生急切想得到自然数还有没有其他分类法,调动学生的学习积极性。)。
二、探索交流,解决问题。
(一)引导学生归纳。
1.1――20各自然数,每个自然数的约数有哪些?有几个约数?
2.按照每个约数个数的多少,可以分成哪几种?每一种各有哪些数?
3.引导学生说明:
有一个约数的。(板书:有一个约数的)。
有两个约数的。(板书:有两个约数的)。
有三个约数的,有四个约数的,有六个约数的。
师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的。(板书:有两个以上约数的)。
(二)按约数个数的多少,把自然数分成三种情况;1.分组再讨论。
2.汇报讨论结果。
3.引导学生说出:1的约数是:1(板书:1的约数:1)。
有两个约数,它们分别是:
板书:2的约数:1、2。
3的约数:1、3。
5的约数:1、5。
7的约数:1、7。
11的约数:1、11。
有两个以上的约数,它们分别是:
板书:4的约数:1、2、4。
6的约数:1、2、3、6。
8的约数:1、2、4、8。
9的约数:1、3、9。
10的约数:1、2、5、10。
12的约数:1、2、3、4、6、12。
……………。
(三)观察比较发现特点。
1.观察2、3、5、7、11的约数,你发现了什么?
(板书:只有1和它本身两个约数)。
2.观察4、6、8、9、12的约数,你发现了什么?
(板书:除了1和它本身还有别的约数)。
3.教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习的新知识,质数和合数。(板书课题:质数和合数)。
(四)质数、合数的定义。
1.一个数,如果只有1和它本身两个约数,这样的数叫做质数。(或素数)(板书)。
2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。(板书)。
3.教师提问:1是质数还是合数?
学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点。
1既不是质数,也不是合数。(板书)。
(五)按约数个数的多少给自然数分类。
1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?(三类:质数、合数和1)。
2.教师提问:判断一个数是质数还是合数,关键是找什么?(关键:找约数的个数。
(设计意图:质数和合数是对自然数进行分类的另一种方法,在本环节学中老师把探求知识过程让学生自己发现,让学生在合作交流中找到了按约数个数多少可以把自然数分为质数和合数。并且找到了判断一个数是质数还是合数的关键词。学生很容易掌握了本节所学知识轻松愉快的突破了教学难点。)。
活动目标:
1、乐意参与活动,体验操作游戏的乐趣。
2、学习按苹果的颜色、大小进行分类,发展幼儿的数数和分类的能力。
3、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。
4、有兴趣参加数学活动。
活动准备:
1、青、红苹果图片若干。
2、红、绿、大、小筐,每桌各一个。
3、动画片:我喜欢苹果
教学过程:
一、导入出示图片,引导幼儿摘苹果的欲望。
教师:看呀!又大又红的苹果,小朋友喜欢吗?我们去摘苹果好不好?
二、展开
1、观察苹果
(1)看看这里都有什么样的苹果呀?
(引导幼儿发现,有红苹果,绿苹果,有大苹果,小苹果。)
(2)小结:我们的这些苹果里面,有红苹果,绿苹果,还有大苹果,小苹果。
2、摘苹果
(1)听口令摘苹果
(2)听拍手声摘苹果
3、苹果分类
(1)把红苹果送到红筐里。
(2)把绿苹果送到绿筐里。
(3)把红筐里的大苹果拿出来放在大红筐里。
(4)把绿筐里的小苹果拿出来放在小绿筐里。
4、收苹果
(1)要求幼儿在规定的时间里收不同的苹果。
(2)数数你收了多少个苹果。
5、苹果展教师:我们把摘得苹果展览一下好吗?
引导幼儿思考摆放的方法。
如:红-绿-红-绿,大-小-大-小,等。
鼓励幼儿想出各种有序的摆放方法。
三、结束
1.教师:今天我们丰收了许许多多的苹果,你们喜欢吃苹果吗?
有一个小朋友也喜欢苹果,我们看看他为什么喜欢苹果?
2.观看动画片:我喜欢苹果活动自然结束。
教学反思:
从这堂课,我们也看出一堂教学活动是要发挥教师的主导性,不放任自流,还是要尊重孩子的自主性,顺其自然。不管哪种占主导,都应该处理好教的方式,让孩子们感觉不到被教,一切像一场游戏活动。教无定法,无论采用哪种教学方式,都必须作用于人的感官才能发挥作用。教学方式实质上是一种刺激手段。讲授法、提问法刺激听觉感官,示范法、观看法刺激视觉感官,练习法、游戏法综合刺激各种感官……因此,教学方式的成败与否,关键是看能否发挥出它应有的刺激性。教师要不断锤炼自身的刺激能力,如独具特色的肢体动作,极富渲染的表情神态,变化多端的语言声调等,这是实现教学方式刺激性的基础。因此优秀的教师应该时刻关注 孩子的肢体、眼睛、嘴巴,了解孩子的内心状态,及时调整自己的教学方式。
一、教材依据:
九年义务教育六年制小学数学北师大版五年级上册第一章“找质数”。
二、设计思路:
本节教材按前一节“找因数”的编写思路编写而成,用小正方形拼长方形的.方法,引导学生认识质数和合数。教材用“12个小正方形拼长方形”作为示范,引导学生继续拼长方形,找出2到12各个数的全部因数,并填入表中进行观察和分析。引导学生发现有的只能拼一种长方形,这样的数只有1和它本身两个因数,有的能拼两种或以上长方形,这样的数有两个以上因数。在讨论交流的基础上,将这些数分为两类,以揭示质数和合数的意义,进而认识1既不是质数也不是合数。
本节课是在学生已经掌握了2、3、5的倍数的特征、熟练找一个数的因数的方法和初步掌握了合作交流的学习方法的基础上进行教学的。质数和合数的意义比较抽象,找质数不象找奇数、偶数和找因数那样规律性强,因此学生接受起来会很困难,因此在教学时要注重找质数的方法的多样性和灵活性。
本节课我本着以人的发展为本的教学理念,着眼于学生的可持续发展,注重教学目标的多元化,在价值目标取向上不仅仅局限于学生获得一般的解决问题技能,更重要的是让学生在数学学习过程中感受到数学自身的魅力,获得数学的基本思想,了解数学的价值,体验问题解决的过程。
三、教学目标:
1、在用小正方形拼长方形的活动中,经历探索质数和合数的过程,理解质数和合数的意义,并能判断一个数是质数还是合数,会把非0自然数按因数的个数进行分类。
2、培养学生自主探索,独立思考、合作交流的能力。
3、在研究质数的过程中丰富对数学发展的认识,培养学生敢于探索科学之谜的精神,充分展示数学文化的魅力。
四、教学重点:经历探索质数和合数的过程,理解质数和合数的意义。
五、教学难点:判断一个数是质数还是合数的方法。
六、教学准备:多媒体课件。
七、教学过程:
以著名的“哥德巴赫猜想”引入。
同学们,你们听说过“哥德巴赫猜想”吗?其实在老师小的时候就听说有人把“哥德巴赫猜想”比作数学王冠上的一颗明珠。你们想知道“哥德巴赫猜想”吗?点击课件出示:每一个大于2的偶数都可以写成两个质数之和。
师:谁来读一下这句话?(生读)你读懂了什么?
生:大于2的偶数。
师:能举个例子吗?(如4、6、8…)没读懂什么?
生:什么是质数?
师:下面我们就来学习什么是质数。
教学反思:一堂课要有好的开头。头开得好,就能先声夺人,造成学生渴望学习新知识的心理状态,产生急欲一听的感染力。“学起于思,思源于疑”,疑问是思维的启发剂。教师要善于设疑,以拨动学生的思维之弦。本节课以著名的“哥德巴赫猜想”为疑导入新课,激发了学生急于学习什么是质数的兴趣,为本节课的顺利进行营造了良好的氛围。
二、探索新知:
1、自主探索:
生:……。
教学反思:让学生经历拼一拼,自主、独立完成填表的实践,着眼于学生自学能力、自主探索精神的培养,使学生在数学学习过程中感受数学的魅力,感悟数学思想方法,获得新知。
2、合作交流:
师:同桌互相交流你是怎样填表的?有什么发现?你是怎样分为两类的?为什么这样分?
生:……。
教学反思:小范围的相互交流,给学生提供了人人参与展示自已成果和取长补短的机会。并能在认识与思维的碰撞中及时、主动地发现和修正自已的不足之处。
3、归纳小结:
师:同学们,表格填写完成了吗?哪一位同学把表格填写的情况给大家讲一讲?
生1、……。
师:这位同学讲的很好。(出示表格)。
活动目标:
1、比较动物的轻、重,理解动物之间的重量关系。
2、能用语言完整表述结果。初步会推断出相互比较的结果。
活动准备:小猫、狗、胖猪等图片若干张,跷跷板图三幅,《幼儿画册》。
活动过程:
1、出示动物图片,引出活动。
师:“有一天,小猫、狗和胖猪碰到了一起,它们三个想玩跷跷板的游戏,可是跷跷板怎么也跷不起来。咦?你们平时是怎么玩跷跷板的呀?总结:原来跷跷板是跟重量有关系的,重的沉下去,轻的翘上来。
2、师:你们要不要来它们啊,看看到底谁轻谁重!
3、(请幼儿操作)先来看看小猫和狗玩跷跷板,谁会沉下去,谁会翘上来呢?那么谁轻谁重呢?谁来把话说完整:谁比谁轻,谁比谁重。我们一起来说一说,小猫比狗轻,狗比小猫重。
4、说的.真完整,现在狗和胖猪来玩跷跷板了,谁会沉下去,谁会翘上来呢?为什么?那么谁轻谁重呢?谁来把话说完整:谁比谁轻,谁比谁重。一起说,狗比胖猪轻,胖猪比狗重。
5、师:“我们比较了胖猪与狗,狗与小猫的重量,那我们还不知道胖猪与小猫谁重谁轻呢?小朋友们你们知道吗?”哪个小朋友上来试一试,他贴的对不对?对就给他拍拍手表扬他一下。你怎么知道的呢?引导幼儿说完整:小猫比狗轻,狗比胖猪轻,所以小猫比胖猪轻。
6、师:“我们比较了胖猪狗小猫的重量,我们要看一看这里谁是最重的,谁是最轻的?”二、感受三种小动物之间的数量关系。
师:我们一起来看看1只胖猪到底等于几只小猫的重量呢?(摆图片)。
三、做《幼儿画册》练习。
1、教师发放《幼儿画册》,向小朋友们介绍做题方法。
2、让小朋友们用笔将图片中重的物体画上圈。
3、通过看图。让小朋友比较幼儿画册中的三类物体,在最重的物体后面画对号,在最轻的物体后面画圈,不重不轻的物体后面什么也不画。
四、总结。
师:“今天我们助小动物们比较了谁重谁轻,我们回家以后自己找些物体来比较,然后明天来幼儿园告诉老师好不好?”
教学目标:
1、创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力
教学重难点:理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
教学过程:
(一)情境引入:
(1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。(摆上正方形)就用他们拼出新的长正方形。因为拼起来很烦琐,所以把你想到的拼的结果画到方格纸上(摆方格纸)在图形中写上这个数,还要标上长宽或边长(举例)
(2)在3分钟内,我们比一比看谁拼得最多,谁就是冠军。
(3)学生反馈汇报:谁拼得多?还有更多的吗?
生反馈24号4种,并验证
(4)看来24号同学是这次比赛的冠军。是最聪明的,你们同意吗?找个代表说说理由。
(5)验证刚才总结出的结论
(二)揭示质数、合数
(1)为什么这些数只能拼出一种来,这些数有什么共同点
(3)投影概念读一读
(4)研究数字1
揭示:1既不是质数也不是合数(板书)读一读
(5)小练习:现在我可以说自然数中不是质数就是合数,对吗?
出示学生表
1、抢答练习:一些数快速判断质数合数
2、判断
3、猜学号认同学
4、自我介绍
2、出示哥德巴赫猜想
板书设计:
质数合数
只有1和它本身没有其他约数叫质数
除了1和它本身还有其他约数叫合数
师:找出1~20各数的因数。
(教师可适当分组安排)。
师:你发现了什么?
(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……。)。
师:今天我们学习的内容就与一个数因数的个数有关。
二、新授。
师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)。
师:同学们都说得非常好,请打开课本翻到第23页,请你按照它的方法分一分。
(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)。
师:1是质数吗?
(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……。)。
(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……。)。
师:1是合数吗?
(学生可能回答:1不是合数,它只有1个因数1。)。
小结:1不是质数,也不是合数。
师:你还能找出其他的质数和合数吗?
(学生举例并说明理由)。
探究二:找出100以内的质数,做一个质数表。(课本p24∕例1。)。
(媒体出示图表)。
师:你有什么好方法?
(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……。)。
(学生可能回答:50的倍数,51的2倍是102,超过100了。)。
(学生制作100以内的质数表。)。
*探究三:分解质因数。
(媒体出示课本p24∕“你知道吗?”。)。
师:你看懂了吗?什么叫作分解质因数?如何将30进行分解质因数?
(学生可能回答:将一个合数分解成几个质数相乘,先将30分解成2×15,再将15分解成3×5,30=2×3×5;……。)。
(教师按照学生回答再对教材提供两种做法给予解释。)。
师:以下做法对吗?错误的请改正。
分解质因数:
(1)12=2×6(2)15=1×3×5。
(学生可能回答:(1):6不是质数,12=2×2×3;(2):1不是质数也不是合数,15=3×5。)。
三、练习。
(课本p25∕练习四。)。
四、小结:
1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。
2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
五、作业。
同步解析与测评p9∕1.(3)(6)(8),2.(2)(4)(5),3.
p10∕4.(2)。
附板书设计:
因数个数。
11个。
自然数质数(素数):只有1和它本身两个因数。2个。
合数:除了1和它本身还有别的因数。2个以上。
1不是质数,也不是合数。
教学内容:人民教育出版社五年级下册p23《质数和合数》。
教学目标:
1、理解什么是质数,什么是合数。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、通过对“你知道吗”的介绍激发学生的学习兴趣和探究欲望。
教学重点:能熟练判断20以内的数哪些是质数,哪些是合数。
教学难点:能正确区分因数、倍数、奇数、偶数、质数、合数等概念。
教学准备:铅笔、多媒体课件等。
活动目标:
1、通过观察图片和操作活动,正确感知并分辨”里,外"。
2、喜欢参加数学活动。
3、能较完整的表达句子。
活动准备经验准备:幼儿对里面和外面已有初步的感知。
物质准备:篮子一个,小球若干,圈三个,沙包若干,炫彩棒和图画纸每人一份。
活动过程:
1、复习上和下,引入方位学习。
认识里外,感知5以内的数量。
出示一个篮子,引导幼儿观察小球在哪里?说说:小球在哪里?另外一只小球在哪里?
操作活动分辨里外,进一步感知5以内的数量。
(1)认识里外。请小朋友看图说说:第一张图片上有什么?他们在哪里?
第二张图片上有什么?他们在哪里?
(2)巩固迁移:丢沙包丢沙包:观察圈里面和外面的物体,手口一致说出圈内有几个沙包,圈外有几个沙包。
(3)全体操作:请你给篮子外面的东西涂上你喜欢的颜色,篮子里面涂上你喜欢的颜色,注意篮子里面和外面的颜色用不一样的颜色代替哦。
3、评价活动。
请个别幼儿上来讲述自己的活动材料,教师和幼儿进行简单地评价。
4、活动延伸(1)美工区:将操作材料投放美工区,幼儿利用区域继续操作。
(2)在户外活动中开展套圈和扔沙包的游戏。
根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的,最小的质数是2。
质数又称素数,个数是无穷的,一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的'因数。
合数。
合数又名合成数,指自然数中除了能被1和本身整除外,还能被0除外的其他数整除的数。两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。
1 数形结合理解质数和合数的意义,能找出百以内的质数,熟悉20以内的8个质数。
2 在探索质数与合数的特征的过程中,体会观察、分析、归纳、猜想、验证等探索方法。
3 培养观察、比较、概括和判断的能力;获得探索问题成功的体验。
质数和合数的意义。
在数学活动中能自主探索质数和合数的特征。
拼一拼
1、小竞赛激趣:上节课我们用12个小正方形拼出了3个不同的长方形,以四人小组为单位比比快速拼出来。(教师巡视,及时了解学情)
2、启发思考:如果小正方形的个数越多,那拼出的长方形的.个数-----,你觉得会怎么样?你们说是――“越多”(不作评价,让学生充分思考。)
3、初步探究:独立尝试研究一下几个小正方形拼长方形的情况
(1)用2、3……11个小正方形分别可以拼成几种长方形?边拼边填写表格
(2)观察表中各数的因数,你有什么发现?
(3)结合发现,将2~12各数分为两类,说一说这两类数分别有什么特点。
根据回答板书
a: 2,3,5,7,11,…
b: 4,6,8,9,10,12…
4、能被再次研究,在分类中认识质数和合数,
(1)小组讨论:a组数有什么特点?(只有1和它本身两个因数)人人都验证一下。
(2)那么b组数有什么共同特征?(除了只有1和它本身两个因数外还有别的因数)
象这样的数你还能说出几个?(个别学生回答,其他学生判断)
5、这两组数各有特征,也各有自己特别的名称,快找找看(板书后全班齐读)
6、你能说说什么样的数叫质数,什么样的数叫合数吗?(组内交流,全班交流)
7、判断:哪些是质数?哪些是合数?并说出理由。
17 21 29 36 1 97
师:1为什么不是质数?(因为它只有一个因数。)质数应该有几个因数?(2个)
玩中练
1、快速记忆:20以内的8个质数
2、自我介绍
自我介绍:根据自己的学号,请说出这个数的特性,能说多少就说多少。(先示范,后试说,再同桌互说)
如:我是1号,1既是奇数,又是最小的自然数,它既不是质数也不是合数。
3、猜电话号码。(从左边起)
第一位和第二位相同:比最小的合数多1
第三位和第五位相同:比1小的自然数
第四位和第六位相同:是最小的合数
第七位:是10以内最大的质数
小结与质疑
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习、提出猜想、合作、交流验证、分类、比较、抽象、归纳总结、巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
理解质数和合数的意义
判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
教具学具准备:
学生每人准备一张学号牌、课件
1、介绍学号数字9和12,引出整数的第一次分类:偶数、奇数。
2、学生介绍数字时出现质数,教师借机引入本节课学习内容:质数和合数。
3、学生汇报预习结果,同时提出学习目标。
1.课前预习。每个同学都有自己的学号,课前大家已经在自己的学号牌上写出1―20的所有因数。(课前完成)
2、交流:课件出示1―12所有的因数,现在请所有同学一起来观察屏幕,看看你把1―12依据什么标准进行分类的?你又是如何理解质数与合数的?课前大家在预习的时候已经有了自己的想法,现在在组内互相说一说。(交流、汇报)
3、教师提问:我们班有29个人,谁的学号是质数?谁的学号是合数?1号同学呢?引出整数的第二次分类(板书)
4、判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
学生先自己想一想,然后分组讨论,汇报交流。
1、51是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
1、你能写成几个质数相乘的形式吗?
6= 、、、 28 = 、、、、
2、判断下面这段话中的数字是质数还是合数。
2月8日,13名河北唐山农民自费来到遭受最严重冰雪灾害的湖南郴州抗冰救灾,他们每天凌晨5点准时起床,忙到晚上12时才能休息,每天工作近20小时,16天时间他们帮助灾区重建了10座电塔。
3、猜一猜:小红家的.电话号码是多少?
4、课堂反馈:
1、总结:本节课学习了什么?你有什么收获?还有什么疑问?
2、回到课始情境,你能打开密码锁了吗?里面是什么?屏显示:“快乐学习,快乐成长”八个大字。
3、师:这就是老师送给你们的礼物。你们快乐吗?说说感受。
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断的能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
理解质数和合数的意义。
判断一个数是质数还是合数的方法。
多媒体课件。
一、准备复习,创设情境。
1、求7和10的约数。
2、25有几个约数?
二、探究发现,理解新知。
(一)教学例1
1、出示例1,写出下面每个数所有的约数(1~12)。
(1)先小组合作完成例一,分别填出每个数的所有的约数,并指出各有几个约数。
(2)例1反馈。
(3)同学们观察一下这些数约数的特点:思考:在自然数范围内,按照每个数的约数个数的特点进行分类,可以分为哪几类?先独立分类,再小组交流。
(4)学生汇报分类情况。
2、比较每类数约数的特点,教学质数与合数的定义。
(1)先观察有2个约数的数。谁能发现,它们的约数有什么特点呢?归纳特点,给出质数的定义。
(2)第三种类型的数与质数的约数比较,又有什么不同?概括合数的定义。
(3)1既不是质数,也不是合数。
(4)举出质数的`例子?
(5)举出合数的例子。
3、自然数按照每个数的约数的多少,又可以怎样分类?
(二)教学例2
1、出示例2。判断下面各数,哪些是质数,哪些是合数?
17、22、29、35、37、87。
(1)同桌先交流一下,再汇报。
(2)37为什么是质数?87为什么是合数?
(3)小结。
(三)看书质疑
(四)游戏。
(五)出示100以内质数表。学生练习记质数。
三、巩固练习,发展提高。
1、在自然数1~20中:
(1)奇数有――――,偶数有――――;
(2)质数有――――,合数有――――。
2、下面的判断对吗?
(1)所有的奇数都是质数。( )
(2)所有的偶数都是合数。( )
(3)在自然数中,除了质数都是合数。( )
(4)一个合数,至少有3个约数。( )
3、猜一猜,老师的电话号码是多少。
四、总结。
(略)
五、作业:
62页1~2。1
一、利用旧知学习新知的学习方法。如在教学例1前,先让学生做一道这样的练习题:学校有8个篮球,12个排球,篮球和排球个数的比多少?让学生发表各种意见,然后讨论篮球和排球的个数比是写成8:12好还是写成2:3好?在教学例1时,先把例题转化成约分:14/21,1.25/4这种形式,让学生运用以前的知识经验进行计算;接着让学生把它看成比的形式,该怎么读呢?学生齐读。教师直接指出这就是我们要学的化简比;从而使学生在不知不觉中进入新的学习。学生学习起来也感觉很简单,容易接受。
二、加强对比,沟通知识间的联系。如8:12和2:3进行比较,通过讨论,发现比的特点,让学生更清晰什么是最简单的整数比;把约分转化成化简比,鲜明的对比,明确地理解化简比的方法。
三、从故事的情景中引入课题,激发学生学习的积极性,并突出学习化简比的必要性。在教学中,本人讲述了一个《商人和上帝》的故事,商人向上帝倾诉自己的努力,却得不到应有的回报,希望能得到上帝的支持和帮助;于是,上帝提出这样的要求:在所给的比当中选择一个比,就是你的朋友与商人的。商人只要从上帝提出的要求中(2.4:4.8、1/6:1/3、36:72等等)选择一个比,上帝就会无条件地送给他们所想的礼物;从商人的思考、难以选择的困惑中,让学生体会到化简比的必要性。
6-0.6×(x-0.6)=0.6。
2.一个数只有()两个因数,这个数叫做质数;一个数除了1和它本身外还有别的因数,这个数叫做()。
3.最小的质数是(),它又是()数。
4.既是奇数又是合数的数是(),既是偶数又是质数的数是()。
5.42的因数有(),78的因数有(),它们的公因数是(),其中最大的一个是()。
6.填上合适的质数:
20=()+()。
28=()+()。
10=()+()=()×()=()—()。
7.一个七位数,最高位上的数字是最小的合数,千位上的数字是最大的一位质数,个位上的数字既是偶数又是质数,其余各位上的.数字都是0,这个数读作()。
8.几个质数连乘的积一定是()数。
9.a、b、c都是质数,并且a+b=c,那么a×b×c的最小值是多少?
1、初步感知物体的重量,知道物体有轻重之分。
2、通过观察、动手操作感知并分辨物体轻重。
3、让幼儿体验数学活动的乐趣。
4、培养幼儿边操作边讲述的习惯。
【活动准备】。
1、ppt课件:天平的`介绍;
2、一筐实物(纸球、积木、铁片、雪花片棉花、积木、玻璃球等)。
【活动过程】。
一、感知轻重。
1、出示两个沙袋。
大小相同,一个轻(棉花),一个重(豆子)。
引导幼儿观察并猜一猜,哪个重?哪个轻?
2、请个别幼儿上来掂一掂,再说说,哪个沙袋重?哪个沙袋轻?
让幼儿摸一摸,掂一掂,正确感知棉花和豆子的轻重。
二、初步认识天平。
1、课件演示。
告诉幼儿天平器是衡量两个物体轻重的一种工具。
2、引导幼儿观察画面,说说:图上有什么?想一想:哪个重?哪个轻?你是怎么知道的?
三、观察天平的变化。
1、让幼儿观察天平的变化,并说说:天平有什么变化?
天平翘起的一边表示什么?天平沉下的一边双表示什么?
帮助幼儿正确地认识物体的轻重。
2、看图分辨轻重。
引导幼儿观察画面,说说:图上有什么?想一想:哪个重?哪个轻?
你是怎么知道的?
四、比较体轻重。
请幼儿每次拿两上筐中的实物玩一玩,掂一掂,感知两物体的重量,说一说:××轻,××重。
五、评价。
1、鼓励幼儿大胆地说说自己同时玩了哪两样东西,哪个重?哪个轻?
2、提高幼儿对操作活动的兴趣。
教学反思:
数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。
教学过程:
一、创设情景,生成问题。
(设计意图:从学生感兴趣的猜自然数还有没有其他分法入手,用一个“猜”拉近了学生与老师的距离,,让学生产生急切想得到自然数还有没有其他分类法,调动学生的学习积极性。)。
二、探索交流,解决问题。
(一)引导学生归纳. 。
1.1――20各自然数,每个自然数的约数有哪些?有几个约数?
2. 按照每个约数个数的多少,可以分成哪几种?每一种各有哪些数?
3.引导学生说明: 。
有一个约数的.(板书:有一个约数的)。
有两个约数的.(板书:有两个约数的)。
有三个约数的,有四个约数的,有六个约数的.
师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的.(板书:有两个以上约数的)。
(二)按约数个数的多少,把自然数分成三种情况; 1.分组再讨论.
2.汇报讨论结果.
3.引导学生说出:1的约数是:1(板书:1的约数:1)。
有两个约数,它们分别是:
板书:2的约数:1、2。
3的约数:1、3。
5的约数:1、5。
7的约数:1、7。
11的约数:1、11。
有两个以上的约数,它们分别是:
板书:4的约数:1、2、4。
6的约数:1、2、3、6。
8的约数:1、2、4、8。
9的约数:1、3、9。
10的约数:1、2、5、10。
12的约数:1、2、3、4、6、12。
……………。
(三)观察比较发现特点.
1.观察2、3、5、7、11的约数,你发现了什么?
(板书:只有1和它本身两个约数)。
2.观察4、6、8、9、12的约数,你发现了什么?
(板书:除了1和它本身还有别的约数)。
3.教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习的新知识,质数和合数.(板书课题:质数和合数)。
1.一个数,如果只有1和它本身两个约数,这样的数叫做质数.(或素数)(板书)。
2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.(板书) 。
3.教师提问:1是质数还是合数?
学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点.
(五)按约数个数的多少给自然数分类.
1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?(三类:质数、合数和1)。
2.教师提问:判断一个数是质数还是合数,关键是找什么?(关键:找约数的个数。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
出示例1:把下面各比化成最简单的整数比。
(1)。
问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)。
问:这是一道分数比,怎样才能使它转化成整数比?(引。
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)。
问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的'前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
四、作业。
1.练习十四第6、10题。
2.一列火车15小时行驶1200千米。
(1)写出行驶的路程和时间的比,并化成最简单的整数比。
(2)求出这个比的比值,再说出这个比值的含义是什么?
找质数教案(模板21篇)
文件夹