有理数乘法的教学设计人教版(专业19篇)
总结是锻炼思维能力和表达能力的有效途径。写总结不是简单地罗列事实,而是要思考和提炼。以下是大师总结的时间管理技巧,帮你合理利用时间提高效率。
有理数乘法的教学设计人教版篇一
预习导学。
一、创设情景,谈话导入。
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律。
二、精讲点拨质疑问难。
根据预习内容,同学们回答以下问题:
(3)0与任何自然数相乘,得____。
(1)乘法交换律:ab=_________。
(2)乘法结合律:(ab)c=_______。
(3)乘法分配律:(a+b)c=________。
除以一个不等于0的数,等于乘这个数的__________。
比较有理数的乘法,除法法则,发现_________可能转化为__________。
有理数乘法的教学设计人教版篇二
三、情感、态度、价值观。
四、教学重难点。
预习导学。
五、教学过程。
一、创设情景,谈话导入。
二、精讲点拨质疑问难。
根据预习内容,同学们回答以下问题:
(1)同号两数相乘。
(2)异号两数相乘。
(3)0与任何自然数相乘,得。
(1)乘法交换律:ab=。
(2)乘法结合律:(ab)c=。
(3)乘法分配律:(a+b)c=。
除以一个不等于0的数,等于乘这个数的。
有理数乘法的教学设计人教版篇三
教学策略:对于认知的主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用诱思探究式教学法并采用多媒体等现代教学手段。以学生为中心,使其在“生动活泼、民主开放、自主探索、合作交流、动手实践”的氛围中愉快地学习,让学生从“学会”到“会学”,使学生真正成为学习的主人.
在教学过程中,我始终:以观察为起点,以问题为主线,以能力培养为核心的宗旨:遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,从而更好的促进学生全面、持续、和谐的发展。
有理数乘法的教学设计人教版篇四
使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法
通过对问题的探索,培养观察、分析和概括的.能力。
3、情感、态度与价值观
能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课
做一做(出示胶片)你能运算吗?
(1)234(-5)
(2)23(-4)(-5)
(3)2(-3)(-4)(-5)
(4)(-2)(-3)(-4)(-5)
(5)-1302(-20xx)0
由此我们可总结得到什么?
(二)合作交流,解读探究
交流讨论不难得到结论:几个不为0的数乘,积的符号由负因数这个数决定。当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘。
注意只要有一个因数为0,则积为0。
有理数乘法的教学设计人教版篇五
一、说教材:
(一)地位、作用:
本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。
(二)教学目标:
1、经历探索有理数的乘法运算律的过程,发展学生观察、归纳等能力。
2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率。
3、能运用乘法运算律简化运算,进一步提高学生的运算能力。
(三)重点、难点:
运用乘法的运算律进行乘法运算。
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教材程序:
第一步。
现在用我们所学的知识,大家解一下这几道题:
6×1313×6(—5)×66×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。
乘法的交换律:两个数相乘,交换因式的位置,积不变。
ab=ba第二步。
(-10)×(-1/3)×0.1×620×1/4×(-8)×1/20第三步。
大家再试试这2道题。
(-4+5+1)×6-4×6+5×6+1×6你发现了什么?
一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。
技能训练,先动手试一试,再讲解。
四、布置作业p33练习。
新课堂作业p20第8题。
有理数乘法的教学设计人教版篇六
本课时的教学设计主要针对刚迈人初中阶段的学生年龄特点和心理特征,以及他们现有的认知水平,采用启发式,小组合作、尝试练习等教学方法,让尽可能多的学生自觉参与到学习活动中来。
首先本节课在引人时利用数轴通过蜗牛运动的例子,且采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究。在引例中把表示具有相反意义的量的正负数在实际问题中求积的问题与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则。
其次在归纳法则的过程中,既培养了学生的概括能力,观察能力及口头表达能力,也让学生通过归纳体验从特殊到一般,从具体到抽象的过程,使他们既学会发现,又学会总结。通过练习中的降价销售问题,引导学生关注身边的数学,体现数学来源于实践又服务于实践的思想。
最后遵循面向全体与因材施教相结合的原则,在练习设计与作业布置中都体现了分层次教学的要求,例题,练习以及思考探究题目的选择,兼顾了不同层次学生的思维水平,学生在讨论发言中的各种灵活方式成为课堂上的亮点。
将本文的word文档下载到电脑,方便收藏和打印。
有理数乘法的教学设计人教版篇七
有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。
二、学情分析。
对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标(核心素养立意)。
1、使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、初步培养学生发现问题、分析问题、和解决问题的能力。
3、通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣。
4、传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点。
五、教学策略。
我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)。
1、复习导入创设情境。
我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。
2、师生互动探究新知。
要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)。
这样设计的目的是。
1、构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的.关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。
2、通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。
3、分析法则掌握实质。
(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。
4、解决问题综合运用。
通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数-乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。
5、体验成功享受快乐。
利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。
6、总结收获畅谈体会。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。
7、布置作业巩固深化。
七、课后反思。
在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!
有理数乘法的教学设计人教版篇八
有理数的乘法是有理数运算的一个非常重要的内容,它与有理数的加法运算一样,也是建立在小学算术运算的基础上。“有理数乘法”的教学,在性质上属于定义教学,历来是一个难点课题,教师难教,学生难理解。有一个比较省事的做法是,略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则。但新课程提倡让学生体验知识的形成过程。本节课尽量考虑在有利于基础知识、基础技能的掌握和学生的创新能力的培养,能最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合新课程倡导的理念。
反思这节课,成功之处在于:
1、创设情境,引入课题,体现了数学来源于生活又服务于生活的理念。。
2、精心设计的现实模型“水位变化,日期前后”使有理数的乘法法则的“规定合理性”与“规定必要性”都得到了事实的说明。:新课程标准强调,教师的有效教学应指向学生有意义的数学学习,而有意义的数学学习又必须建立在学生的主观愿望和知识经验基础之上.在此背景下,本节课的引入部分通过幻灯片形象直观地展示学生熟悉的水库水位变化情况,创设了真实的问题情境。意在诱发同学们进行探索与解决问题,这样既激发了学生的学习兴趣,又让学生体会到数学问题来源于实际生活。
3、练习设计,让学生体验到成功的乐趣。整节课内容安排紧凑,由浅入深,循序渐进地突破难点。根据初一学生的思维特点和年龄特征,设计了“试一试”、“练一练”、“合作学习”等环节,激发学生的好奇心,并在教学中尽量用激励性和导向性的语言来鼓励学生大胆发言,面向全体学生,让学生在比较轻松和谐的课堂氛围中较好地完成了学习任务。
尽管最初的设计能体现一些新的理念,但经过课堂实践后,仍感到有许多不足。
1、课堂引入化时间太多。有理数的加法对本节课的作用不是很大,直接从水位变化的实例引出可以节省一些时间用于合作学习的环节。
2、“练一练”这一环节的题目设计的较难,对中下学生一时难以接受。重点应该是练习有理数乘法的法则,计算量不易太大。先从整数乘以整数,再进行分数乘以分数,由易到难的顺序进行,学生会容易接受。
3、整堂课感觉教师启发引导的较多,给学生自主探索思考的空间较少。这样不利于学生思维的发展,不利于学生主体作用的发挥。
文档为doc格式。
有理数乘法的教学设计人教版篇九
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构。
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:
定义规定了原点、正方向、单位长度的直线叫数轴。
三要素原点正方向单位长度。
应用数形结合。
有理数乘法的教学设计人教版篇十
(二)能力训练目标:
1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2.能运用乘法运算律简化计算。
(三)情感与价值观要求:
1.在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2.在讨论的过程中,使学生感受集体的力量,培养团队意识。
乘法运算律的运用。
乘法运算律的运用。
探究交流相结合。
创设问题情境,引入新课。
[活动1]。
问题2:计算下列各题:
(1)(-7)×8;。
(2)8×(-7);。
(5)[3×(-4)]×(-5);。
(6)3×[(-4)×(-5)];。
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?
(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。
讲授新课:
[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:
1.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.
2.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3.一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。
3.用简便方法计算:
[活动4]。
练习(教科书第42页)。
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题1.4的第7题(3)、(6)。
用简便方法计算:
(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
(2)[(4×8)×25一8]×125。
有理数乘法的教学设计人教版篇十一
【知识与能力目标】。
掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。
【过程与方法目标】。
体验分类是数学上的常用处理问题的方法。
【情感态度价值观目标】。
要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史。
教学重难点。
【教学重点】。
正确理解有理数的概念。
【教学难点】。
课前准备。
复习正负数,尝试将之前学过的数进行合理的分类。
教学过程。
探索新知。
之前我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如:
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。“(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。
按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)。
练一练。
1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2、教科书第8页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究。
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表(略)。
小结与作业。
课堂小结。
请同学们回顾本节课所学知识,回答下列问题:
1、有理数是怎样定义的?
2、有理数有几种分类方法?具体是怎样分类的?
3、有理数的学习过程中,应注意什么?
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
作业。
教科书第14页习题1.2第1题。
板书设计(略)。
有理数乘法的教学设计人教版篇十二
经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
二、过程与方法。
经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
三、情感态度与价值观。
培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键。
1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备。
投影仪。
四、教学过程。
一、引入新课。
五、新授。
课本第28页图1.4-1,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点o.
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。
有理数乘法的教学设计人教版篇十三
走进教室,上课铃声还没响,我便在黑板上画出上课要用的数轴,还有几个例题,以便节省上课时间。上课铃响了,我便按预设思路讲了起来,没想到同学们跟我配合的非常默契,不一会就引导他们推导出了乘法的法则(仍然先定符号再定绝对值),接着学以致用解决例题,通过观察例题引出了倒数的定义并加以阐述和引用,最后通过利用顺序方法做一系列的多个有理数的乘法归纳出多个数相乘的法则(关键是定积的符号时跟负引数关系的问题的探讨),课堂顺利进行,当我们一块处理完最后一道练习题时,下课铃响了。
有理数乘法的教学设计人教版篇十四
有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。
对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2.初步培养学生发现问题、分析问题、和解决问题的能力。
4.传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
(一)复习导入创设情境。
我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。
(二)师生互动探究新知。
要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)。
这样设计的目的是构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。
通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。
(三)分析法则掌握实质。
(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。
(四)解决问题综合运用。
通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数-乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。
(五)体验成功享受快乐。
利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。
(六)总结收获畅谈体会。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。
(七)布置作业巩固深化。
在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!
有理数乘法的教学设计人教版篇十五
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
有理数乘法的教学设计人教版篇十六
(1)学生的参与性可以更强,主体地位可以更突出。例如在学生总结法则时,有多名同学发言且每位同学各说出了法则的一部分,此时可以让同学将以上几位同学的发言提炼,总结归纳,进而让一位同学完整的叙述出整个法则,从而锻炼了学生思维的合理性,提高了学生的总结能力。
(2)对学生的追问可以更深入,尽管我已经随机应变,但对学生的追问还可以更加深入一步。例如在引入有理数乘法算式时,要求学生观察(-3)×4这个算式与我们小学时学过的乘法算式有什么不同。一个同学发言说“小学时学的都是正数乘以正数,但现在可能会有用一个负数乘上一个正数”。我当时的追问是“第一,你为什么要用‘可能’二字?是不确定的意思吗?还是个别的意思?”学生回答“不是不确定,而是除了负数乘以正数外,还有别的情况”。接下来我就追问了第二个问题:“第二,我们小学时只学过两个正数相乘吗?”学生略考虑回答:“应该是两个非负数相乘”。但实际上,当我在追问第一个问题时,如果能够让该生尽其所能得把所有“可能”的情况都列出来并板书在黑板上,由此引入有理数的乘法,既能体现语言的严谨与简洁性,效果也可能会更好。这就说明追问不仅要“追”,而且要追得恰当,追得深。
(4)语言不够简洁,该留白时没有留白,要努力做到“点到为止”。留白是十分重要的,它既能有效地调动学生学习探索的积极性,又能避免“填鸭式”的教学方法。
通过本节课的分析,我有主要两点收获:一是教学要面向全体学生,也要注意个别差异,因材施教;二是要充分尊重学生的主体地位,如果是学生主动的学习,他们就会对知识产生浓厚的兴趣,热情就会得到提高,思维也会非常的活跃,这样就更容易掌握相应的知识,收获就会更多。
有理数乘法的教学设计人教版篇十七
有理数的乘法是有理数运算的一个非常重要的内容,它与有理数的加法运算一样,也是建立在小学算术运算的基础上。“有理数乘法”的教学,在性质上属于定义教学,历来是一个难点课题,教师难教,学生难理解。而新课程提倡让学生体验知识的形成过程。本节课尽量考虑在有利于基础知识、基本技能的掌握和学生的创新能力的培养,能最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合新课程倡导的理念。
反思这节课,我的成功之处在于:
1、创设情境,引入课题,体现了数学来源于生活又服务于生活的理念。为学习新知识做准备。
2、通过现实模型“蜗牛在数轴上爬行问题”使有理数的乘法法则的“规定合理性”与“规定必要性”都得到了事实的说明。激发了学生的学习兴趣,也让学生体会到数学问题来源于实际生活。
3、练习设计,让学生体验到成功的乐趣。通过“运用巩固,练习提高”、“课堂总结”等环节,激发学生的好奇心,并在教学中尽量用激励性和导向性的语言来鼓励学生大胆发言,面向全体学生,让学生在比较轻松和谐的课堂氛围中较好地完成了学习任务。
不足之处是:
1、课堂引入化时间太多。有理数的加法对本节课的作用不是很大,直接从蜗牛在数轴上爬行问题的实例引出可以节省一些时间用于合作学习的环节。
2、学生在进行有理数乘法计算时,正确率不高,容易出现符号错误。少数学生不理解有理数乘法法则。
3、整堂课感觉教师启发引导的较多,给学生自主探索思考的空间较少。这样不利于学生思维的发展,不利于学生主体作用的发挥。
有理数乘法的教学设计人教版篇十八
在新课程理念的指导下,我设计并实施了《有理数的乘方》这节课的教学,感触很深。在关注学生小组合作参与学习的过程中,发现学生的想像力极为丰富,学生很有潜质,只要教师充当学生学习活动中平等的指导者、促进者,让学生真正成为实践探索者、知识构建者、愉快的收获者,这种新型的师生关系一定会促使学生思维得到发展,能力得到提高。
我更加理解了“创造性地使用教材”和“真正地以学生为本”的理念,深感这种理念在教学实践中落实的必要性、艰巨性。任重而道远,我将把科学探索贯穿于教学始终,与学生共同发展。
文档为doc格式。
有理数乘法的教学设计人教版篇十九
3.进一步感悟“转化”的`思想。
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。
1、完成下列计算:
(1)3+7—12;(2)(—8)—(—10)+(—6)—(+4)。
归纳:根据有理数的减法法则,有理数的加减混合运算可以统一为运算;
省略负数前面的加号和()后的形式是______________________;
展示交流。
1、把下列运算统一成加法运算:
2、将下列有理数加法运算中,加号省略:
(1)12+(—8)=________________;
3、将下列运算先统一成加法,再省略加号:
=_________________________。
4、仿照本p37例6,完成下列计算:
(1)—4—5+6;(2)—23+41—24+12—46。
盘点收获。
个案补充。
1.计算:
本p39习题2.5第6题(1)、(3)、(5),第7题。