最新数学必修三教学设计(四篇)
文件格式:DOCX
时间:2023-03-10 00:00:00    小编:懂壹点人情世故

最新数学必修三教学设计(四篇)

小编:懂壹点人情世故

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

数学必修三教学设计篇一

一、知识点归纳

(一)空间几何体的结构特征

(1)多面体——由若干个平面多边形围成的几何体.

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征

1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

(二)空间几何体的三视图与直观图

1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。

3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系  中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。

(三)空间几何体的表面积与体积

1、空间几何体的表面积

①棱柱、棱锥的表面积: 各个面面积之和

②圆柱的表面积

③圆锥的表面积 ④圆台的表面积

⑤球的表面积 ⑥扇形的面积公式 (其中 表示弧长, 表示半径)

2、空间几何体的体积

①柱体的体积

②锥体的体积

③台体的体积

④球体的体积

二、练习与巩固

(1)空间几何体的结构特征及其三视图

1.下列对棱柱说法正确的是( )

a.只有两个面互相平行 b.所有的棱都相等

c.所有的面都是平行四边形 d.两底面平行,且各侧棱也平行

2.一个等腰三角形绕它的底边所在的直线旋转360。形成的曲面所围成的几何体是( )

a.球体 b.圆柱 c.圆台 d.两个共底面的圆锥组成的组合体

3.下列命题正确的是( )

a.平行与圆锥的一条母线的截面是等腰三角形

b. 平行与圆台的一条母线的截面是等腰梯形

c. 过圆锥母线及顶点的截面是等腰三角形

d. 过圆台的一个底面中心的截面是等腰梯形

4.棱台不具备的特点是( )

5.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是( )

a.球体 b.圆柱 c.圆锥 d.圆柱、圆锥及球体的组合体

6.将装有水的长方体槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体是 ( )

a.棱柱 b.棱台 c.棱柱与棱台的组合体 d.不能确定

7.下列命题正确的是 ( )

a.矩形的平行投影一定是矩形 b.梯形的平行投影一定是梯形

c.两条相交直线的平行投影可能平行

d.一条线段中点的平行投影仍是投影线段的中点

8.将等腰三角形绕它的底边上的高旋转一周, 形成的几何体一定是( )

a.圆锥 b.圆柱 c.圆台 d.上均不正确

9.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是( )

a.圆锥 b.圆柱 c. 球体 d. 以上都可能

10.下列图形中,不是三棱柱的展开图的是()

11.三视图均相同的几何体有()

a.球 b.正方体 c.正四面体 d.以上都对

12.下列几何体各自的三视图中,有且仅有两个视图相同的是()

a.①② b.①③ c.①④ d.②④

13.有一个几何体的三视图如下图所示,这个几何体应是一个( )

a. 棱台 b. 棱锥 c. 棱柱 d. 都不对

(2)空间几何体的表面积和体积

1.圆柱、圆锥、圆台的侧面展开图及侧面面积公式.

2.空间几何体的表面积和体积公式.

名称

几何体

表面积

体积

柱体

(棱柱和圆柱)

s表面积=s侧+2s底

v=________

锥体

(棱锥和圆锥)

s表面积=s侧+s底

v=________

台体

(棱台和圆台)

s表面积=s侧+s上+s下

v=_________

____________

s=________

v=πr3

一、选择题

1.已知三个球的体积之比为1:8:27,则它们的表面积之比为()

a.1:2:3 b.1:4:9 c.2:3:4 d.1:8:27

2.有一个几何体的正视、侧视、俯视图分别如图所示,则该几何体的表面积为 ( )

a. b. c. d.

3.棱长都是 的三棱锥的表面积为( )

a. b. c. d. 4.长方体的一个顶点上三条棱长分别是 ,且它的 个顶点都在同一球面上,则这个球的表面积是( )

a. b. c. d.都不对

5.三角形abc中,ab= ,bc=4, ,现将三角形abc绕bc旋转一周,所得简单组合体的体积为( )

a. b. c.12 d.

6.某四棱锥的三视图如图所示,该四棱锥的表面积是( )

a.32 b. c.48 d.

7.设正方体的棱长为,则它的外接球的表面积为()

a. b.2π c.4π d.

8.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 ( )

. . . .

9.长方体的一个顶点上三条棱长分别是 ,且它的 个顶点都在

同一球面上,则这个球的表面积是( )

a. b. c. d. 都不对

10.正方体的内切球和外接球的半径之比为( )

a. b. c. d.

二、填空题

1. 中, ,将三角形绕直角边 旋转一周所成

的几何体的体积为____________。

3.正方体 中, 是上底面 中心,若正方体的棱长为 ,

则三棱锥 的体积为 .

三、解答题

2.已知圆台的上下底面半径分别是 ,且侧面面积等于两底面面积之和,

求该圆台的母线长.

3.(如图)在底半径为 ,母线长为 的圆锥中内接一个高

为 的圆柱,求圆柱的表面积

4.已知一个空间几何体的三视图如图所示,其中正视图、侧

视图都是由半圆和矩形组成,根据图中标出的尺寸,计算这个

几何体的表面积. key:11

求该几何体的体积v; (2)求该几何体的侧面积s

一、教材分析

二、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感、态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

三、重点难点

教学难点:识别三视图所表示的几何体.

四、课时安排

1课时

(一)导入新课

教师指出课题:投影和三视图.

思路2.

教师点出课题:投影和三视图.

(二)推进新课、新知探究、提出问题

图1

②通过观察和自己的认识,你是怎样来理解投影的含义的?

③请同学们观察图2的投影过程,它们的投影过程有什么不同?

图2

④图2(2)(3)都是平行投影,它们有什么区别?

图3

活动:①教师介绍中国的民间艺术皮影戏,学生观察图片.

②从投影的形成过程来定义.

③从投影方向上来区别这三种投影.

④根据投影线与投影面是否垂直来区别.

⑤观察图3并归纳总结它们各自的特点.

讨论结果:①这种现象我们把它称为是投影.

知识归纳:投影的分类如图4所示.

图4

提出问题

②正视图、侧视图和俯视图各是如何得到的?

③一般地,怎样排列三视图?

讨论结果:①三视图包含正视图、侧视图和俯视图.

图5

④投影规律:

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.

画组合体的三视图时要注意的问题:

由三视图还原为实物图时要注意的问题:

(三)应用示例

思路1

例1 画出圆柱和圆锥的三视图.

活动:学生回顾正投影和三视图的画法,教师引导学生自己完成.

解:图6(1)是圆柱的三视图,图6(2)是圆锥的三视图.

(1) (2)

图6

变式训练

说出下列图7中两个三视图分别表示的几何体.

(1) (2)

图7

例2 试画出图8所示的矿泉水瓶的三视图.

图8 图9

解:三视图如图9所示.

变式训练

画出图10所示的几何体的三视图.

图10 图11

答案:三视图 如图11所示.

思路2

甲 乙

图12

答案:(1)(2)(3)

变式训练

(1) (2)

图13

答案:b c

例2 (2007广东惠州第二次调研,文2)如图14所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )

甲 乙 丙

图14

①长方体 ②圆锥 ③三棱锥 ④圆柱

a.④③② b.②①③ c.①②③ d.③②④

答案:a

变式训练

图15 图16

2.(2007山东高考,理3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )

图17

a.①② b.①③ c.①④ d.②④

分析:正方体的三视图都是正方形,所以①不符合题意,排除a、b、c.

答案:d

(四)知能训练

1.下列各项不属于三视图的是( )

a.正视图 b.侧视图 c.后视图 d.俯视图

分析:根据三视图的规定,后视图不属于三视图.

答案:c

2.两条相交直线的平行投影是( )

a.两条相交直线 b.一条直线

c.两条平行直线 d.两条相交直线或一条直线

图18

答案:d

3.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,如图19所示.甲说他看到的是“6”,乙说他看到的是“  6”,丙说他看到的是“ 9”,丁说他看到的是“9”,则下列说法正确的是( )

图19

a.甲在丁的对面,乙在甲的左边,丙在丁的右边

b.丙在乙的对面,丙的左边是甲,右边是乙

c.甲在乙的对面,甲的右边是丙,左边是丁

d.甲在丁的对面,乙在甲的右边,丙在丁的右边

图20

答案:d

4.(2007广东汕头模拟,文3)如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为( )

a.棱锥 b.棱柱 c.圆锥 d.圆柱

答案:c

5.(2007山东青岛高三期末统考,文5)某几何体的三视图如图21所示,那么这个几何体是( )

图21

a.三棱锥 b.四棱锥 c.四棱台 d.三棱台

分析:由所给三视图可以判定对应的几何体是四棱锥.

答案:b

6.(2007山东济宁期末统考,文5)用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图22所示,则搭成该几何体需要的小正方体的块数是(  )

图22

a.8 b.7 c.6 d.5

答案:c

7.画出图23所示正四棱锥的三视图.

图23

答案:正四棱锥的三视图如图24.

图24

(五)拓展提升

(1)你能确定 哪些字母表示的数?

(2)该几何体可能有多少种不同的形状?

图25

①a=3,b=1,c=1;

②d,e,f中的最大值为2.

所以上述字母中我们可以确定的是a=3,b=1,c=1.

(2)当d,e,f中有一个是2时,有3种不同的形状;

当d,e,f有两个是2时,有3种不同的形状;

当d,e,f都是2时,有一种形状.

所以 该几何体可能有7种不同的形状.

(六)课堂小结

本节课学习了:

1.中心投影和平行投影.

2.简单几何体和组合体的三视图的画法及其投影规律.

3.由三视图判断原几何体的结构特征.

(七)作业

习题1.2 a 组 第1、2题.

1教学目标

2学情分析

通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。

3重点难点

重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。

(一)、基础自测:

1.棱长为a的正方体表面积为__________.

3.长方体、正方体的侧面展开图为__________.

4.圆柱的侧面展开图为__________.

5.圆锥的侧面展开图为__________.

(二).尝试学习

1.柱体的表面积

2.锥体的表面积

3.台体的表面积

(三).互动课堂

例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,侧棱长为b,则其侧面积为()

a. c.(+)ab

例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是()

a.2π b. c.6π d.9π

例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为()

a. b.2 c. d.

(四).巩固练习:

3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为()

a.81π b.100π c.14π d.169π

(五)、 课堂小结:

求柱体表面积的方法

(3)求圆柱的侧面积只需利用公式即可求解.

(4)求棱锥侧面积的一般方法:定义法.

(5)求圆锥侧面积的一般方法:公式法:s侧=πrl.

(6)求棱台侧面积的一般方法:定义法.

(7)求圆台侧面积的一般方法:公式法s侧=2(r+r′)l.

五、当堂检测

1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()

a.32 b.16+16

c.48 d.16+32 网]

2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为()

a.180 b.200 c.220 d.240

3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于()

a.6 b.6π c.3π d.6π

六、作业:(1)课时闯关(今晚交)

七、课后反思:本节课你会哪些?还存在哪些问题?

1.3空间几何体的表面积与体积

课时设计 课堂实录

1.3空间几何体的表面积与体积

(一)、基础自测:

1.棱长为a的正方体表面积为__________.

3.长方体、正方体的侧面展开图为__________.

4.圆柱的侧面展开图为__________.

5.圆锥的侧面展开图为__________.

(二).尝试学习

1.柱体的表面积

2.锥体的表面积

3.台体的表面积

(三).互动课堂

例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,侧棱长为b,则其侧面积为()

a. c.(+)ab

例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是()

a.2π b. c.6π d.9π

例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为()

a. b.2 c. d.

(四).巩固练习:

3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为()

a.81π b.100π c.14π d.169π

(五)、 课堂小结:

求柱体表面积的方法

(3)求圆柱的侧面积只需利用公式即可求解.

(4)求棱锥侧面积的一般方法:定义法.

(5)求圆锥侧面积的一般方法:公式法:s侧=πrl.

(6)求棱台侧面积的一般方法:定义法.

(7)求圆台侧面积的一般方法:公式法s侧=2(r+r′)l.

五、当堂检测

1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()

a.32 b.16+16

c.48 d.16+32 网]

2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为()

a.180 b.200 c.220 d.240

3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于()

a.6 b.6π c.3π d.6π

六、作业:(1)课时闯关(今晚交)

七、课后反思:本节课你会哪些?还存在哪些问题?

课题名称

《2.1空间点、直线与平面之间的位置关系》

科 目

高中数学

教学时间

1课时

学习者分析

通过第一章《空间几何体》的学习,学生对于立体几何已经有了初步的认识,能够识别棱柱、棱锥、棱台、圆柱、圆锥、圆台、球,并理解它们的几何特征。但是这种理解还只是建立在观察、感知的基础上的,对于原理学生是不明确的,所以学生此时有很强的求知欲,急于想搞清楚为什么;同时学生经过高中一年的学习,已经具备了一定的逻辑推理能力,只是缺乏训练,不够严密,不够清晰;有一定的自主探究和合作学习的能力,但有待提高,并愿意动手并参与分组讨论。

教学目标

一、知识与技能

3. 明确三公理三推论的功能,掌握使用三公理三推论解决立体几何问题的方法。

二、过程与方法

2. 通过思考、讨论,发现三公理三推论的条件和结论;

3.通过例题的训练,进一步理解三公理三推论,明确三公理三推论的功能。

三、情感态度与价值观

1.通过操作、观察、讨论培养对立体几何的兴趣,建立合作的意识;

2.感受立体几何逻辑体系的严密性,培养学生细心的学习品质。

教学重点、难点

1.理解三公理三推论的概念及其内涵;

2.使用三公理三推论解决立体几何问题。

教学资源

(1)每位同学准备两张硬纸板,其中一张中间用小刀划条缝,铅笔三根;

(2)教师自制的多媒体课件。

《2.1空间点、直线与平面之间的位置关系》教学过程的描述

教学活动1

一、导入新课

2. 提出问题:构成空间几何体有哪些基本元素?(大屏幕出示棱柱、棱锥、棱台)学生很快得到答案:点、直线、平面。

3. 引入课题:什么是平面?点、直线、平面之间有什么样的位置关系?平面有什么性质?这就是我们这堂课要研究的问题。

教学活动2

二、观察操作,合作探究

1. 理解平面的概念

平面也是一个最原始的概念,是向四周无限延伸的,没有边界。一般用希腊字母、、,…表示平面,或者记为平面abc,平面abcd等等。

2. 明确空间点、直线、平面之间存在的位置关系

①点与直线;②点与平面;③直线与平面。

3. 探究平面的性质

⑴ 公理一

① 学生操作,研究如何将铅笔放置到硬纸板内

问题一:铅笔与硬纸板只有一个公共点可以么?

问题二:要将铅笔放置到硬纸板内至少需要几个公共点?

学生通过操作,体会到要将铅笔放置到硬纸板内,只需将铅笔上两点放置到硬纸板内。

② 抽象出公理一

问题一:如何用图形表示公理一?

问题二:要求学生将公理一表示成数学符号的形式;

问题三:公理一有什么功能?

③ 动画演示公理一

⑵ 公理二

① 学生操作,研究过空间中三点能确定几个平面

问题一:若三点共线,能确定几个平面?

问题二:要确定一个平面,需要三点满足什么条件?

学生通过操作,体会公理二所表达的含义。

② 抽象出公理二

问题一:如何用图形表示公理二?

问题二:要求学生将公理二表示成数学符号的形式;

问题三:还能根据什么条件确定一个平面?引出三推论。

问题四:公理二及三推论有什么功能?

③ 动画演示公理二及三推论

⑶ 公理三

① 学生操作,展示两个平面只有一个公共点

问题一:两个平面真的只有一个公共点么?

问题二:这个公共点与这条公共直线有什么关系?

学生通过操作,体会公理三所表达的含义。

② 抽象出公理三

问题一:如何用图形表示公理三?

问题二:要求学生将公理三表示成数学符号的形式;

问题三:公理三有什么功能?

③ 动画演示公理三

教学活动3

三、归纳总结,加深理解

⒈ 平面具有无限延展性;

⒉ 公理一有什么功能?条件是什么?

⒊ 公理二有什么功能?条件是什么?

⒋ 公理三有什么功能?条件是什么?

教学活动4

四、布置作业,课外研讨

⒈ 课后练习p43:1、2、3、4;

⒉ 平面几何中证明平行四边形有哪些定理?这些定理在空间中能否成立?说明理由。

共1课时

1教学目标

一、知识与技能:1、理解并掌握直线与平面平行的性质定理;

2、引导学生探究线面平行的问题可以转化为线线平行的问题,从而能够通过化归解决有关问题,进一步体会数学转化的思想。

二、过程与方法:通过直观观察、猜想研究线面平行的性质定理,培养学生的自主学习能力,发展学生的合情推理能力及逻辑论证能力。

三、情感、态度与价值观:培养学生主动探究知识、合作交流的意识,在体验数学转化过程中激发学生的学习兴趣,从而培养学生勤于动脑和动手的良好品质。

2重点难点

教学重点:线与面平行的性质定理及其应用。

教学难点:线与面的性质定理的应用。

3教学过程 3.1 第一学时 教学活动 活动1【导入】问题引入

一、问题引入

预设:(1)过p作一条直线平行于b′c′;

(2)过p作一条直线平行与bc。

(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)

活动2【讲授】新课讲授

二、知识回顾

判定一条直线与一个平面平行的方法:

1、定义法:直线与平面没有公共点。

2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)

三、知识探究(一)

答:平行或异面。

答:无数条;平行。

答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。

(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)

四、知识探究(二)

定理可简述为:线面平行,则线线平行。

直线与平面平行的性质定理的符号表示:

(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)

活动3【练习】课堂练习

五、应用示例

练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。

(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )

(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )

(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )

例3 如图所示的一块木料中,棱bc平行于面a′c′.

(1)要经过面a′c′ 内一点p和棱bc将木料锯开,应怎样画线?

(2)所画的线与平面ac是什么位置关系?

分析:经过木料表明a′c′内的一点p和棱bc将木料锯开,实际上是经过bc及bc外一点p做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。

活动4【讲授】课堂小结

六、课堂小结

1、直线与平面平行的判定定理

(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(2)线线平行→线面平行

2、直线与平面平行的性质定理

(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

(2)线面平行→线线平行

(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)

活动5【作业】课后作业

p61练习,习题2.2a组:1,2. (做在书上)

p62习题2.2a组:5,6.

2.2直线、平面平行的判定及其性质

课时设计 课堂实录

2.2直线、平面平行的判定及其性质

1第一学时 教学活动 活动1【导入】问题引入

一、问题引入

预设:(1)过p作一条直线平行于b′c′;

(2)过p作一条直线平行与bc。

(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)

活动2【讲授】新课讲授

二、知识回顾

判定一条直线与一个平面平行的方法:

1、定义法:直线与平面没有公共点。

2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)

三、知识探究(一)

答:平行或异面。

答:无数条;平行。

答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。

(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)

四、知识探究(二)

定理可简述为:线面平行,则线线平行。

直线与平面平行的性质定理的符号表示:

(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)

活动3【练习】课堂练习

五、应用示例

练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。

(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )

(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )

(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )

例3 如图所示的一块木料中,棱bc平行于面a′c′.

(1)要经过面a′c′ 内一点p和棱bc将木料锯开,应怎样画线?

(2)所画的线与平面ac是什么位置关系?

分析:经过木料表明a′c′内的一点p和棱bc将木料锯开,实际上是经过bc及bc外一点p做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。

活动4【讲授】课堂小结

六、课堂小结

1、直线与平面平行的判定定理

(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(2)线线平行→线面平行

2、直线与平面平行的性质定理

(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

(2)线面平行→线线平行

(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)

活动5【作业】课后作业

p61练习,习题2.2a组:1,2. (做在书上)

p62习题2.2a组:5,6.

数学必修三教学设计篇二

(借助多媒体)给出一张王小丫的图片(学生情绪高涨),大家都知道王小丫是cctv-2“开心词典”的栏目主持人,下面王小丫给大家出题啦!

①1,2,3,4,5,6,7,8, ,…

②3,6,9,12,15, ,21,24,…

③-1,-3,-5,-7,-9,-11, ,-15,…

④2,2,2,2,2,2, ,2,2,…

设计思路:1.通过几个具体的等差数列,为学习新知识创设问题情境,激发学生的求知欲。2.由学生观察数列特点,初步认识等差数列的特征,为后面引出等差数列的概念学习建立基础。3.学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。4.对问题的总结可以培养学生由具体到抽象、由特殊到一般的认知能力。5.按照“观察--猜想--证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。

思考并交流对概念的理解,并总结:

①“从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式: (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1). 9 ,8,7,6,5,4,……;√ d=-1

3). 0,0,0,0,0,0,…….; √ d=0

4). 1,2,3,2,3,4,……;×

5). 1,0,1,0,1,……×

由此强调:公差可以是正数、负数,也可以是0

a2-a1=d 即:a2=a1+d

a3-a2=d 即:a3=a2+d

……

猜想:

a40= a1+39d

进而归纳出等差数列的通项公式: an=a1+(n-1)d

设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳 的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。

a2-a1=d

a3=a2+d

……

an-an-1=d 将这n-1个等式左右两边分别相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,当n=1时,此式也成立,所以对一切n∈n﹡,上面的公式都成立,因此它就是等差数列{an }的通项公式。

在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。将n-1个等式相加,证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求。

例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项

例2 在等差数列{an}中,已知a5=10, a20=31,求首项与公差d。

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的三个量已知时,可根据该公式求出第四个量。

例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。

1、课后的练习中的第1题和第2题(要求学生在规定时间内完成)。

目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、课后习题第3题和第4题。

目的:对学生加强建模思想训练。

1.等差数列的概念及数学表达式an-an-1=d (n≥1)。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

2.等差数列的通项公式会知三求一。

3.用“数学建模”思想方法解决实际问题。

必做题:课本习题第2,6 题

选做题:已知等差数列{an}的首项= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

数学必修三教学设计篇三

《2.1空间点、直线与平面之间的位置关系》

科 目

高中数学

教学时间

1课时

学习者分析

通过第一章《空间几何体》的学习,学生对于立体几何已经有了初步的认识,能够识别棱柱、棱锥、棱台、圆柱、圆锥、圆台、球,并理解它们的几何特征。但是这种理解还只是建立在观察、感知的基础上的,对于原理学生是不明确的,所以学生此时有很强的求知欲,急于想搞清楚为什么;同时学生经过高中一年的学习,已经具备了一定的逻辑推理能力,只是缺乏训练,不够严密,不够清晰;有一定的自主探究和合作学习的能力,但有待提高,并愿意动手并参与分组讨论。

教学目标

一、知识与技能

3. 明确三公理三推论的功能,掌握使用三公理三推论解决立体几何问题的方法。

二、过程与方法

2. 通过思考、讨论,发现三公理三推论的条件和结论;

3.通过例题的训练,进一步理解三公理三推论,明确三公理三推论的功能。

三、情感态度与价值观

1.通过操作、观察、讨论培养对立体几何的兴趣,建立合作的意识;

2.感受立体几何逻辑体系的严密性,培养学生细心的学习品质。

教学重点、难点

1.理解三公理三推论的概念及其内涵;

2.使用三公理三推论解决立体几何问题。

教学资源

(1)每位同学准备两张硬纸板,其中一张中间用小刀划条缝,铅笔三根;

(2)教师自制的多媒体课件。

《2.1空间点、直线与平面之间的位置关系》教学过程的描述

教学活动1

一、导入新课

2. 提出问题:构成空间几何体有哪些基本元素?(大屏幕出示棱柱、棱锥、棱台)学生很快得到答案:点、直线、平面。

3. 引入课题:什么是平面?点、直线、平面之间有什么样的位置关系?平面有什么性质?这就是我们这堂课要研究的问题。

教学活动2

二、观察操作,合作探究

1. 理解平面的概念

平面也是一个最原始的概念,是向四周无限延伸的,没有边界。一般用希腊字母、、,…表示平面,或者记为平面abc,平面abcd等等。

2. 明确空间点、直线、平面之间存在的位置关系

①点与直线;②点与平面;③直线与平面。

3. 探究平面的性质

⑴ 公理一

① 学生操作,研究如何将铅笔放置到硬纸板内

问题一:铅笔与硬纸板只有一个公共点可以么?

问题二:要将铅笔放置到硬纸板内至少需要几个公共点?

学生通过操作,体会到要将铅笔放置到硬纸板内,只需将铅笔上两点放置到硬纸板内。

② 抽象出公理一

问题一:如何用图形表示公理一?

问题二:要求学生将公理一表示成数学符号的形式;

问题三:公理一有什么功能?

③ 动画演示公理一

⑵ 公理二

① 学生操作,研究过空间中三点能确定几个平面

问题一:若三点共线,能确定几个平面?

问题二:要确定一个平面,需要三点满足什么条件?

学生通过操作,体会公理二所表达的含义。

② 抽象出公理二

问题一:如何用图形表示公理二?

问题二:要求学生将公理二表示成数学符号的形式;

问题三:还能根据什么条件确定一个平面?引出三推论。

问题四:公理二及三推论有什么功能?

③ 动画演示公理二及三推论

⑶ 公理三

① 学生操作,展示两个平面只有一个公共点

问题一:两个平面真的只有一个公共点么?

问题二:这个公共点与这条公共直线有什么关系?

学生通过操作,体会公理三所表达的含义。

② 抽象出公理三

问题一:如何用图形表示公理三?

问题二:要求学生将公理三表示成数学符号的形式;

问题三:公理三有什么功能?

③ 动画演示公理三

教学活动3

三、归纳总结,加深理解

⒈ 平面具有无限延展性;

⒉ 公理一有什么功能?条件是什么?

⒊ 公理二有什么功能?条件是什么?

⒋ 公理三有什么功能?条件是什么?

教学活动4

四、布置作业,课外研讨

⒈ 课后练习p43:1、2、3、4;

⒉ 平面几何中证明平行四边形有哪些定理?这些定理在空间中能否成立?说明理由。

数学必修三教学设计篇四

教学目标

数列求和的综合应用

数列求和的综合应用

典例分析

3、数列{an}的前n项和sn=n2—7n—8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和tn

6、数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn,求数列{bn}前n项和公式

(1)求证{an}是等差数列

(2)若bn= an—30,求数列{bn}前n项的最小值0。已知f(x)=x2 —2(n+1)x+ n2+5n—7(n∈n)

(2)设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn。

9、购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0。8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

10、某商品在最近100天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)= —t/3 +109/3(0≤t≤100)

求这种商品的日销售额的最大值

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新数学必修三教学设计(四篇) 文件夹
复制