有理数的乘方教案大全(通用9篇)
文件格式:DOCX
时间:2023-11-24 17:24:19    小编:梦幻泡

有理数的乘方教案大全(通用9篇)

小编:梦幻泡

教案是教师为指导教学活动而制定的教学计划和组织安排的一种书面文件。编写教案前,教师应对教学内容进行充分准备和了解。以下是小编为大家整理的教案范例,仅供参考,希望能给大家提供一些启示。大家可以参考其中的教学目标、教学内容、教学方法等,进行借鉴和思考,提高自己的教学水平。教案是教学中的重要依据,希望大家能够重视起来,不断改进和完善自己的教学设计,提高教学质量。

有理数的乘方教案篇一

一、教学目标:

1、认知目标。

正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

2、能力目标。

(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

(2).使学生能够灵活地进行乘方运算。

3、情感目标。

让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

二、教学重难点和关键:

1、{}教学重点:正确理解乘方的意义,掌握乘方运算法则。

2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

三、教学方法。

考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

四、教学过程:

1、创设情境,导入新课:

这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

师:假如我现在抽取的是黑3红3黑4红5(幻灯片放映图片)如何算24?

师:如果四张都是3呢?

生答:-3-3×3×(-3)=。

生:思考几分钟后,有同学会想出的答案。

师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)。

2、动手实践,共同探索乘方的定义。

学生活动:请同学们拿出一张纸进行对折,再对折。

问题:(1)对折一次有几层?2。

(2)对折二次有几层?

(3)对折三次有几层?

(4)对折四次有几层?

师:一直对折下去,你会发现什么?

生:每一次都是前面的2倍。

师:请同学们猜想:对折20次有几层?怎样去列式?

生:20个2相乘。

师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

简记:……。

师:请同学们总结对折n次有几层?可以简记为什么?

2×2×2×2……×2。

shapemergeformat。

n个2。

生:可简记为:

师:猜想:生:

师:怎样读呢?生:读作的次方。

的因数),叫做指数(相同因数的个数)。

注意:乘方是一种运算,幂是乘方运算的结果。看作是的次方的结果时,也可读作的次幂。

有理数的乘方教案篇二

本节课学生对新知识的掌握情况比较好,课堂气氛活跃,有效地完成了教学目标。通过本课的设计我深深的感到,教师必须要调动学生的主动性,要正确地认识课堂教学中的师生交流,要让学生真正参与课堂,才有效,才是真实的教学,通过富有创意的实践和探究,建构一个生动活泼和富有个性的师生、生生交往的课堂情景,促进每一个学生的充分发展,以提高课堂教学的效率。有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。

因此要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序入手。从有理数乘方书写格式,有理数乘方常见错误以及拓展等五个方面来教学。不足之处是在小组交流过程中学生的发言过分地注重于探索的结果,尤其是问题8的探究学习,忽视了学生探索过程的展示。同时教师有些提问限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

有理数的乘方教案篇三

2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

一般地,在an中,a取任意有理数,n取正整数?

应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

例1计算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;。

(3)0,02,03,04?

教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)模向观察。

正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

(2)纵向观察。

互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

(3)任何一个数的偶次幂都是什么数?

任何一个数的偶次幂都是非负数?

你能把上述的结论用数学符号语言表示吗?

当a0时,an0(n是正整数);

当a。

当a=0时,an=0(n是正整数)?

(以上为有理数乘方运算的符号法则)。

a2n=(-a)2n(n是正整数);

=-(-a)2n-1(n是正整数);

a2n0(a是有理数,n是正整数)?

例2计算:

(1)(-3)2,(-3)3,[-(-3)]5;。

(2)-32,-33,-(-3)5;。

(3),?

让三个学生在黑板上计算?

课堂练习。

计算:

(1),,,-,;

(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。

(3)(-1)n-1?

让学生回忆,做出小结:

1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?

1?计算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;。

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?

2?填表:

3?a=-3,b=-5,c=4时,求下列各代数式的值:

4?当a是负数时,判断下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。

5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

6*?若(a+1)2+|b-2|=0,求a20xxb3的值?

有理数的乘方教案篇四

1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)。

2.能将用科学记数法表示的数还原为原数.(重点)。

一、情境导入。

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

生活中,我们还常会遇到一些比较大的数.例如:

1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

二、合作探究。

探究点一:用科学记数法表示大数。

例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()。

a.167×103b.16.7×104。

c.1.67×105d.1.6710×106。

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选c.

方法总结:科学记数法的表示形式为a×10n,其中1≤|a|10,n为整数,表示时关键要正确确定a的值以及n的值.

例220xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()。

a.9.34×102b.0.934×103。

c.9.34×109d.9.34×1010。

解析:934千万=9340000000=9.34×109.故选c.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

探究点二:将用科学记数法表示的数转换为原数。

例3已知下列用科学记数法表示的数,写出原来的数:

(1)2.01×104;(2)6.070×105;(3)-3×103.

解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

解:(1)2.01×104=20100;。

(2)6.070×105=607000;。

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

三、板书设计。

科学记数法:

(1)把大于10的数表示成a×10n的形式.

(2)a的范围是1≤|a|10,n是正整数.

(3)n比原数的整数位数少1.

本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

有理数的乘方教案篇五

(1)正确理解乘方、幂、指数、底数等概念。

通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。

培养探索精神,体验小组交流、合作学习的重要性。

教学重、难点与关键。

1.重点:正确理解乘方的意义,掌握乘方运算法则。

2.难点:正确理解乘方、底数、指数的概念,并合理运算。

3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。

1.几个不等于零的有理数相乘,积的符号是怎样确定的?

几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?

边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.

aa简记作a2,读作a的平方(或二次方)。

aaa简记作a3,读作a的立方(或三次方)。

一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

有理数的乘方教案篇六

知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。

过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。

鼓励猜想,倡导参与,学会倾听,建立自信心。

学习重点:理解有理数乘方的意义和表示,会进行乘方运算。

学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。

探究归纳法。

1、求n个的运算叫做乘方,乘方的结果叫做。

2、在式子an(n为正整数)中,叫底数,叫指数,叫幂。

3、负数的奇次幂是,负数的偶次幂是,正数的任何次幂,0的任何次幂。

知识点1:有关乘方的概念。

1、(-3)4表示的意义是,,底数是,指数是,结果是。

2、43的底数是指数是,表示的意义是,结果等于。

知识点2乘方的运算。

3、计算0.0012=;(-?)=。

4、(-2)5读作;-25读作。

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课。

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]。

动画演示:

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]。

动画演示:

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

[学生活动:积极思考,有同学做跃跃欲试状。]。

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

有理数的乘方教案篇七

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

文档为doc格式。

有理数的乘方教案篇八

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、怎样学。

归纳概念。

n个a相乘aaa=,读作:。其中n表示因数的个数。

求相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算。

(1)26(2)73(3)(3)4(4)(4)3。

例2:(1)()5(2)()3(3)()4。

【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算(2)2009+(2)。

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()。

a8个b16个c4个d32个。

2.一根长1cm的绳子,第一次剪去一半。第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()。

a()3mb()5mc()6md()12m。

3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。

4.计算。

(1)(3)3(2)(0.8)2(3)0(4)12004。

(5)104(6)()5(7)-()3(8)43。

(9)32(3)3+(2)223(10)-18(3)2。

5.已知(a2)2+|b5|=0,求(a)3(b)2.

会用科学计数法表示绝对值较大的数。

二、怎样学。

定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。

例题教学。

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至12月人们最后一次收到它发回的.信号时,它已飞离地球1200000km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000(2)57000000(3)123000000000。

例3.写出下列用科学记数法表示的数的原数。

2.311053.001104。

1.281038.3456108。

思考:比较大小。

(1)9.2531010与1.0021011。

(2)7.84109与1.011010。

学怎样。

1.用科学记数法表示314160000得()。

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()。

3.人类的遗传物质是dna,dna是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()。

a.3108b.3107c.3106d.0.3108。

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。

5.比较大小:

10.91081.11010;1.111089.99107.

6.用科学记数法表示下列各数。

有理数的乘方教案篇九

2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

一般地,在an中,a取任意有理数,n取正整数?

应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

例1计算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;。

(3)0,02,03,04?

教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)模向观察。

正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

(2)纵向观察。

互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

(3)任何一个数的偶次幂都是什么数?

任何一个数的偶次幂都是非负数?

你能把上述的结论用数学符号语言表示吗?

当a0时,an0(n是正整数);

当a。

当a=0时,an=0(n是正整数)?

(以上为有理数乘方运算的符号法则)。

a2n=(-a)2n(n是正整数);

=-(-a)2n-1(n是正整数);

a2n0(a是有理数,n是正整数)?

例2计算:

(1)(-3)2,(-3)3,[-(-3)]5;。

(2)-32,-33,-(-3)5;。

(3),?

让三个学生在黑板上计算?

课堂练习。

计算:

(1),,,-,;

(2)(-1)2001,322,-42(-4)2,-23(-2)3;。

(3)(-1)n-1?

让学生回忆,做出小结:

1、乘方的有关概念?

2、乘方的符号法则?3?括号的作用?

1、计算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;。

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?

2、填表:

3、a=-3,b=-5,c=4时,求下列各代数式的值:

4、当a是负数时,判断下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。

5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

6、若(a+1)2+|b-2|=0,求a2000b3的值?

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制