读书是一种精神享受和知识积累的方式,我想我们需要多读一些好书。写一篇完美的总结,要注重总结的实用性和可操作性。以下是小编为大家收集的总结范文,希望能为大家提供一些参考。
本单元的教学中我注重以下几点:
面积公式的推导是本单元的重难点,这些知识是建立在学生数、剪、拼、摆的操作活动之上的,所以动手操作是本单元教学的重要环节之一。教师要做好引导不要包办代替,要给学生留出时间和空间让学生在独立思考和合作交流的基础上进行操作获得知识。通过让学生动作实际操作活动,这样就发展了学生的空间观念,提高学生动手操作能力,解决问题能力。
“转化”是数学学习和研究的一种重要思想方法,本单元面积公式的推导都渗透“转化”思想方法。在本单元的教学中注重发挥教师组织者,合作者,引导者的作用和发挥学生的主体作用,通过让学生动手操作去获得本单元知识。教学中一方面启发引导学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,让学生通过讨论和交流等形式,把自己操作——转化——推导过程叙述出来,促过学生思维和表达能力的发展。
运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教学中教师要鼓励学生从不同的途径和角度去思考和探索解决问题。通过引导学生通过观察,作虚线等方法,清晰地认识一个简单图形、组合图形的构成,并能正确地进行计算。
教学内容:
人教版小学数学教材五年级上册第113页第2题及相关练习。
教学目标:
(一)知识与技能。
复习已学的多边形面积的计算公式。
(二)过程与方法。
利用转化思想,推导出平行四边形、三角形和梯形的面积计算公式,将各种组合图形的面积转化为已学的多边形面积并加以计算。
(三)情感态度和价值观。
加强知识间的联系,培养学生综合运用各种知识解决问题的能力。
目标解析:
本学期所学的平行四边形、三角形和梯形的面积计算公式都可以从长方形的面积计算公式推导而来。理解推导的过程,对加强知识间的内在联系、掌握转化的数学思想方法起着重要的作用。掌握了这些,学生今后即使忘记某个多边形的面积计算公式,也可自行推导得出。在计算组合图形的面积时,可以鼓励学生采用不同的方法进行计算,提高学生解决问题的能力。
教学重点:
利用转化思想掌握多边形面积的计算公式。
教学难点:
采用不同方法计算组合图形的面积,提高综合应用知识解决问题的能力。
教学准备:
教具:课件;
学具:每人准备两个完全相同的三角形、梯形和一个平行四边形。
教学过程:
一、创设情境,引出新课。
李爷爷有一块地,种了三种蔬菜,是哪三种呢?我们一起去看看(课件出示图片)。
教师引导学生发现信息与问题。
信息:种茄子的是一块三角形的地,底长15m,高是32m;种黄瓜的是一块平行四边形的地,底长25m,高是32m;种西红柿的是一块梯形的地,上底是15m,下底是23m,高是32m。
问题:茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少平方米?
【设计意图】通过情境的创设,拉近数学与生活的联系,使学生产生亲切感,产生学习的兴趣。
二、解决问题,复习方法。
1.三角形的面积=底高2。
=15322。
=240(平方米)。
思考:计算三角形的面积时,为什么要除以2呢?
(出示两个完全相同的三角形,请同学拼一拼,明白三角形的面积就是两个完全相同的三角形所拼成的平行四边形面积的一半。)。
2.平行四边形的面积=底高。
=2532。
=800(平方米)。
思考:为什么平行四边形的`面积是底高,而不是底斜边呢?
(沿平行四边形的高减下三角形,就可以拼得一个长方形。长方形的一边是平行四边形的底,长方形的另一边就是平行四边形的高。)。
3.梯形的面积=(上底+下底)高2。
=(15+23)322。
=608(平方米)。
思考:有谁能说一说梯形的面积公式是怎样得来的?
(用两个完全相同的梯形可以拼成一个平行四边形。平行四边形的底就是梯形的上底+下底,平行四边形的高就是梯形的高,梯形的面积是拼成的平行四边形面积的一半。)。
4.你能用不同的方法求出李爷爷菜地的总面积吗?学生独立解决问题再汇报。
方法一:总面积=三角形的面积+平行四边形的面积+梯形的面积。
=240+800+608。
=1648(平方米)。
方法二:三种图形组合成一个梯形,上底是(25+23)米,下底是(15+25+15)米,高是32米。
总面积=[(25+23)+(15+25+15)]322。
=1648(平方米)。
【设计意图】在呈现简单实际问题的情境中,让学生在解决问题的过程中,回顾了多边形面积计算公式的相关知识和推导面积计算公式的方法,既巩固了多边形的面积计算,又发展了学生迁移、转化的方法和思想。带着问题动手操作,使抽象的知识形象化,进一步唤起对旧知的回忆。用不同的方法求菜地的总面积,让学生进一步感受到解决问题的多样化,训练了学生的思维。
三、巩固练习,应用拓展。
1.课件出示教材第116页练习二十五第7题。
(1)学生独立解题。
(2)汇报评价。
2.课件出示教材第116页练习二十五第8题。
(1)学生独立解题。
(2)汇报评价。
指名说清计算过程中的每一步所表示的意义。既可分段列式,也可以综合列式。
3.课件出示教材第116页练习二十五第9题。
(1)学生独立解题,教师巡视,适当指导。
(2)小组交流汇报,教师评价。
4.课件出示教材第116页练习二十五第10题。
(1)题目给出什么条件,要求什么?
(条件:小方格的边长为1cm。要求:组合图形的面积。)。
(2)学生自主尝试解决问题后,小组交流。
(3)学生汇报自己是怎么想的,教师评价。
【设计意图】第7题与第8题属于基础题,通过解决生活中的简单问题巩固平行四边形及梯形面积的计算公式,让学生进一步熟练面积计算公式;第9题的难度有所加大,体现运用不同方式解决问题的思想,充分体现了开放性,既可通过割的方式,也可通过补的方式来计算,方法三难度相对较大,需要教师引导学生找到三角形的高,让学生感受解决问题的多样性;第10题更为灵活开放,学生先确定方法,再找出相应的长度计算,通过学生汇报自己的思考方法,优化认知,形成共识。
四、全课总结。
这堂课你巩固了什么知识?你有什么新的收获?
【设计意图】将有关多边形面积的知识再次进行系统回顾,既加深印象,又将复习中获得的新知表达出来,让同学们共享,使其对知识的认知再次得到提升。
本单元教学中我本着:“以学生发展为本,以活动为主线,以创新为主导”的思想。让学生亲身主动地参与学习过程,经历学习中的问题的提出,探索解决问题的方法和途径,在经历中真正理解和掌握知识,体验成功的快乐,同时学生的.自主学习能力、创新能力得到了培养。在教学策略上,把多边形面积公式的推导化为学生剪一剪、拼一拼、说一说的活动,通过小组活动、操作实践等手段借助多媒体的演示,帮助学生理解知识点,使抽象的知识变得直观形象。
平行四边形面积计算,是学习平面几何初步知识的基础,尤其是平行四边形面积公式的推倒,蕴涵着转化的数学思想,因此,在本单元教学中,我把平行四边形面积计算公式的推导过程作为教学的重中之重,课内给学生充足的时间进行操作和交流,在学生自主探究的基础上推导出计算公式。使学生在学习推导三角形、梯形面积公式时已成顺水推舟之势,轻松、愉悦,学生在模仿、迁移、推导的过程中,学会学习、学会思考,真正成为学习的主人。
在教学多边形这一个单元时,在新授课时,强调了让学生自己动手实验,找出相互之间的联系,推导出各自的面积计算公式,因为在这一环节中用时较多,常常导致后面安排的练习题不能全部在课堂上完成;练习课时,由于时常注重了对后进生掌握情况的关注,比如说多请他们回答问题,尤其让他们多说说思考过程,这样的结果致使事先安排的习题又一次不能全部完成。
导致出现这种现象的原因是什么呢?经过反思,应该是“精讲多练”做得还不够。有时候,作为教师时常怕学生不理解,总是多讲、反复讲,自以为讲清楚了,学生也就听懂了,事实果真会这样吗?未必。学生他有自己的思维方式,有时候老师越讲他甚至越糊涂,只有在具体的练习中他才会真正掌握。
教学内容:。
五年级第96--97页整理和复习及练习十九。
教学目的:。
1、通过整理和复习,使学生进一步理解和掌握多边形面积计算公式,能正确、灵活地运用公式进行有关计算,解决一些简单的实际问题。
2、通过操作、观察、比较,发展学生的空间观念,建立良好的知识结构,培养学生的创新意识。
3、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。
教学重点:。
整理完善知识结构、灵活解决实际问题。
教学难点:。
教具、学具准备:。
信封、内装用破纸剪制的三种图形,一张写着长8米,宽6米的长方形的纸。
本单元的主要教学内容包括:平行四边形的面积、三角形的面积、梯形的面积以及组合图形的面积。多边形面积的计算是在学生学习了图形的平移与旋转,掌握了这些平面图形的特征,以及长方形,正方形面积计算公式的基础上进行教学的。
回顾08学年五年级学生学习本章时,学生的问题主要有:
1、学生多边形面积公式的推导过程表达不清。课堂上每一个多边形面积公式的推导过程都是比较清晰的,无论是把平行四边形转化成长方形,还是把两个完全相同的.三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程模糊,表达不清。
2、部分学生不会分辨底、高(不能正确画出高),进行组合图形面积计算时候,不能很好利用平行四边形对边相等、不能创造性地通过虚线清晰地把图形进行分解,从而引起计算错误。
3、审题不清,经常不注意单位的异同,面积计算结果经常用长度单位。
为了有效地解决类似问题,我主要采取了以下措施:
1、重视动手操作、观察与交流汇报。
本单元面积公式的推导都是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,却忌由教师带着做。
2、引导学生探究,渗透转化思想。
本单元面积的推导都采用了转化的方法。在本单元的教学中,以学生的探究活动为主要形式,教师加强指导和引导。通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法。利用讨论和交流等形式,要求学生把自己操作转化推导的过程叙述出来,以发展学生的思维和表达能力。
3、注意培养学生用多种策略解决问题的意识和能力。
运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教师要鼓励学生从不同的途径和角度去思考和探索解决问题。引导学生通过观察,作虚线等方法,清晰地认识一个简单图形、组合图形的构成,并能正确地进行计算。
4、在教学中培养审题习惯、检查习惯等等。
学生出现审题不清,单位出错,原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯,并强调学生完成计算后,应该对答案和单位进行检查,从而杜绝不写单位和写错单位的不良行为。
将本文的word文档下载到电脑,方便收藏和打印。
《多边形的面积》是新人教版第六单元内容。这单元教学内容包括四部分:平行四边形的面积,三角形的面积,梯形的面积和组合图形的面积。
教学时我注重让学生经历面积公式的推导过程,让学生亲自经历数、剪、拼、摆的操作活动。在思维训练上注重渗透“转化”思想,引领学生运用“转化”的方法将新研究图形转化为已经会计算面积的图形,并通过对比探究新研究图形与转化后图形间有什么关系,从而得出新研究图形面积计算的方法。对于组合图形面积的计算,我则渗透了两种思维:一是将组合图形分成若干个已会计算面积的单一图形(分割法),这几个单一图形面积总和便是这个组合图形面积;二是根据图形特征将这个组合图形补成已学过的一个单一大图形(添补法),用这个大图形面积减去补充部分的图形面积便是原组合图形面积。
本以为这样教下来,学生掌握很好,等到本单元的综合测试结果一出来,让我大失所望,更感到我班后进生辅导工作的严峻与艰辛,也感觉到中下成绩学生学得很吃力。一是计算单一图形面积,有个别后进生能写对图形面积计算公式而不会将数据代入公式计算,如果图形是侧放的则无法找到相应的.底和高。而组合图形也就更让他们感到困难了,即使能将图形分成几个单一图形了,他们也无法正确找到相应的数据计算对单一图形面积。二是部分学生计算失误严重。三是单位的改写要么没有,要么出错。
以上这些原因让我不知所措,可见我在平时教学中对中下成绩学生关注得不够,以至中下成绩学生知识出现脱节。针对自己的不足以及学生知识的缺陷,今后在课堂教学中要注意多关注中下成绩学生学习情况,课后多采取措施辅导他们的学习,要帮助他们把最基础的知识补回来,然后再逐渐提高。
【知识与技能】初步掌握多边形内角和与外角和,进一步了解转化的数学思想。
【教学重点】多边形内角和外角和的探索和应用。【教学难点】转化数学思想方法的渗透。
第一环节创设现实情境,提出问题,引入新课。
1.多媒体展示八卦图,看到这幅图,你想到什么数学知识。2.回顾三角形内角和的探索方法。
第二环节实验探究。
1、提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究.活动一:利用四边形探索四边形内角和要求:先独立思考再小组合作交流完成.)(师巡视,了解学生探索进程并适当点拨.)(生思考后交流,把不同的方案在纸上完成.)。
……(组间交流,教师课件展示几种方法)。
教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。
2、活动二:探索五边形、六边形、七边形、八边形的内角和。(要求:独立思考,自主完成.)。
3、探索n边形内角和,并试着说明理由。
4、学会了求多边形的内角和你还想学些什么知识?你准备如何求多边形的外角和?
《多边形的面积》是五年级的数学的内容!下面是由小编为大家带来的关于《多边形的面积》。
说课稿。
希望能够帮到您!
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
依据以上分析和新课标的要求,确定本节课要达到的教学目标如下:
(一)知识与能力目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
(二)过程与方法目标:培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
(三)情感态度与价值观目标:培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
(四)教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:平行四边形面积公式的推导方法—转化与等积变形。
关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
通过平时的学情观察,我发现学生已经掌握了平行四边形的特征和长方形面积的计算方法,并且有些学生对平行四边形的面积内容并不陌生,已经有了一定的认识,但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此,这是学生学习这一内容的重点和难点。同时,学生的认识水平存在着差异性,如何让不同层次的学生都有一定程度的发展和提高,也是教学中要考虑的重点。为突破重难点,关键要遵循小学生认识事物的一般规律,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。我打算为本节课准备的教具(学具)有多媒体。
课件。
自制长方形框架方格纸课件平行四边形纸片剪刀直尺等。
运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
自主探究与合作交流是小学数学新课程标准倡导的学生学习数学的重要方式。学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生自主探究与合作交流,通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:
(一)巧设情境,铺垫导入。
(二)合作探索,迁移创造。
(三)层层递进,拓展深化。
(四)总结全课,提高认识。
下面我就分别从这四个方面说一说:
新课开始,我先拿出一个长方形框架,让学生回忆长方形的面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
随后我把长方形框架拉成了平行四边形框架,并让学生比较周长是否发生变化?面积是否发生变化?通过这些问题,促使学生积极动脑猜想,平行四边形的面积和它的什么东西有关系。
为说明面积发生变化,引出数方格求面积的方法。数方格的时候注意提醒学生先数整格、后数半格,并提示数半格的方法。通过数方格,学生很容易知道拉成后的平行四边形的面积比原来长方形的面积要小了。这时我启发学生平行四边形的面积计算和长方形是不一样的,不可能等于相邻两条边的乘积了。那么拉成后的平行四边形的面积为什么会变小呢?平行四边形的面积究竟和什么有关呢?从而引出本节课的课题:平行四边形的面积计算(板书)。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
由于前面在数格子时已经有同学提到用割补的方法来求面积,所以我顺水推舟,让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,我引导学生有序按照三个步骤——怎么画、怎么剪、怎么拼来说。同时,我及时抛给学生这样一个问题:“拼成的长方形面积变了没有?”引发学生积极开动脑筋思考。之后,请学生展示不同方法。
汇报后,我总结了预设的两种基本方法,并用媒体展示了过程,使学生更清楚地了解等积转化的过程。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底。接着我让学生根据填空同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,公式用字母表示s=ah,并让学生齐读和书空。
刚才用数方格的方法算出了平行四边形的面积,现在让学生用公式计算并验证。同时,我及时让学生反馈用公式计算要知道什么信息。并让学生比较数方格和公式计算哪种方便。培养学生用心学习观察的情感。
例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?引导学生写完整整个解题过程。
新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的。
教学设计。
我发挥教师的引导作用倡导学生动手操作、合作交流的学习方式进而建构了学生头脑中新的数学模型:转化图形——建立联系——推导公式。整个过程是学生在实践分组讨论中不断完善提炼出来的这样完全把学生置于学习的主体把学习数学知识彻底转化为数学活动培养了学生观察、分析、概括的能力。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
有利于学生加深对公式的理解,举一反三,知道求高和求底的公式。
强化公式中对高的理解,知道高是底边上对应的高。
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
猜一猜:如果让你设计一个平行四边形的。
黑板报。
栏目,要求面积是24平方分米,那么底和高各是多少?(底和高都是整数)。
发散学生思维,在一定程度上对学生进行几何美的教育。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
小结:这节课你有什么收获?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
总之,以上教学程序的设计遵循学生的认知规律,我大胆放手让学生探究、交流,让学生感觉到数学的生动好玩,学生在一次次引导中操作、思考、解决问题,其外部活动逐渐转化为自身内部的智力活动,从而使学生获取了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。
平行四边形和三角形的面积需要学生操作、在操作中感知面积的推导过程,但学生的操作能力不一,小组合作的能力还没有养成,所以安排的操作环节只对好学生起了作用,中等及以下的学生没有起到效果,还浪费了不少时间,感觉课堂比较散,学生的注意力不能有效的集中,只是开学一周来的最主要的现象,反思这一周就培养学生的合作、交流能力,估计是不适宜的,开学初,接一个新班,可能还是,先明确要求,培养学生坐正认真听讲的习惯,让学生的注意力集中到教师身上,养成眼睛看黑板的习惯,开学初就安排小组合作容易分散学生的注意力,造成课堂比较散的现象。
虽然基本上学生都能掌握计算的公式,但一部分学生对计算公式的推倒不清楚,不知道为什么这么算,所以在计算中会出现问题,反思课堂,在这一环节处理上也感觉不够清楚,学生操作时比较散,导致中下等学生不理解。
教师主观意识太强,觉得课后安排的练习比较简单,也没重视,其实可以在细节上进行教学,如单位名称,好多学生都写的是长度单位,不是面积单位,答语的完整,书写的规范,观察单位等等。
也可适当增减,增加一些思维含量稍高的练习,为作业中的难题目打好基础,埋下伏笔。从而提高课堂效率。也避免了作业中的题目没时间讲。
课堂作业中反映的问题,计算不过关,书写马虎,单位名称不注意,全是平方厘米。没有仔细观察题目。
教师讲的又多了,感觉容量大,就怕时间来不及,就不有自主的教师讲,学生的自主学习意识就单薄了,备课还需加强,哪些地方要让学生先尝试,先讲,要考虑好,不能上课时临场发挥。
思考明天的练习课,简单的题目,加快频率,有所侧重,第7题侧重单位的处理和直角三角形的底和高,第8题侧重是乘还是除,答语的完整。第9题侧重高的位置。复杂的要花时间,三题都要先让学生思考后再交流,教师一定要舍得花时间,不可代替,主观讲授,否则效果不会好。时间控制在25分钟内,思考题适当提醒完成。留出10分钟左右评讲补充习题上的2条题目。
将本文的word文档下载到电脑,方便收藏和打印。
1.用字母表示三角形和梯形的面积计算公式是()和()。
2.2.3m2=dm23200cm2=()dm2。
0.25m2=()cm26500平方米=()公顷。
3.一个平行四边形的底和高都是1.4m,它的面积是()m2,和它等底等高的三角形的面积是()m2。
4.一个直角三角形的两条直角边分别是0.3cm和0.4cm,斜边长0.5cm,这个直角三角形的面积是()cm2。
5.一个三角形的面积是240m2,高是40m,底是()m。
6.两个完全一样的梯形可以拼成一个()。
7.一个正方形的周长是32dm,那么它的边长是()dm,面积是()dm2。
8.一个平行四边形的面积是36m2,如果把它的底和高都缩小到原来的3倍,得到的平行四边形的面积是()m2。
9.一个梯形的上底扩大2倍,下底也扩大2倍,高不变,那么它的面积扩大()倍。
10.设计一个面积为24平方米的三角形,底为(),高为()。
二、判断题。
1.三角形的面积等于平行四边形的一半。()。
2.两个花园的周长相等,它们的面积也一定相等。()。
3.一个三角形的底扩大2倍,高不变,它的面积也扩大2倍。()。
4.同底等高的.两个三角形,形状不一定相同,但它们的面积一定相等。()。
5.两个面积相等的梯形纸片一定能拼成一个平行四边形。()。
三、选择题。
1.一个平四边形的面积是4.2cm2,高是2cm,底是()cm。
a.2.1b.1.05c.2d.4.2。
2.学校篮球场占地面积约是0.6()。
a.公顷b.平方米c.米d.平方千米。
3.能拼成一个长方形的是两个完全一样的()三角形。
a.锐角b.等腰c.钝角d.直角。
4.已知梯形的面积是45dm2,上底是4dm,下底是6dm,它的高是()dm。
a.9b.4.5c.2.25d.455.等腰梯形周长是48厘米,面积是96平方厘米,高是8厘米,则腰长()。
a.24厘米b.12厘米c.18厘米d.36厘米。
四、计算题。
五、解决问题。
六、思考题。
一个三角形的底长5米,如果底延长。
1米,那么面积就增加1.5平方米,那么原来三角形的面积是多少平方米?
1、在系统复习的基础上通过练习加以巩固,使学生掌握多边形面积面积的计算公式,并能准确熟练地加以运用,解决简单的实际问题。
2、培养学生收集信息的能力和灵活运用知识解决生活中的实际问题的能力。
3、灵活、熟练地应用面积计算公式,解决有关实际问题。
3、培养学生良好的合作意识。
一、复习各图形面积的计算公式:
要求学生分别用文字的和字母的规范表达各公式,写在作业本上。
二、练习。
1、第6题填表指名分别说说每题的结果,如果有错,再指名说说应该怎么算。3、2、第7题读题后,强调:这道题要分两步,先算面积,再算题中的问题。指名说说算面积的方法。方法一:20×9-1×9(提醒:减去的也是一个平行四边形,不是减“1”)方法二:(20-1)×9(转化:可以假设那条小路是在边上,那平行四边形的底就是19米了。)比较两种方法的联系,算一算。
3、第8题读题后,估计有的学生不能很好的理解“每个三角形的腰长8米”。可画其中的一个,让学生理解这个腰长,其实也就是直角三角形的底和高分别是8米。
4、第9题,读题后模仿第7题的解题步骤,指名板演。
注意的问题:
(1)算出的面积57平方米是不是就是57千克?应该用怎样的算式表达得才比较规范?
(2)算出需要油漆57千克后,后面怎么写才规范?
5、第10题。读题、看读图。
(1)说说该题钢管的排列特点。说说你联想到了什么图形?(梯形)提醒:横截面指名说说算梯形的几个关键数据:上底(9)、下底(14)和高(6)可以怎么算:(9+14)×6÷2=69(根)。
(2)根据排列特点,如果下面还有钢管,分别是多少?如果最下面一排是16根,怎么算?完成板书:9+10+11+12+13+14+15+16观察该算式,你可以怎么算?方法一:用(头+尾)乘个数除以2的方法方法二:凑十法比较两种方法,哪个更简单?为什么?指出:凑十法是低年级时学得的方法,这题用方法一更简单,它适用于更多的情况。“头”相当于“上底”,“尾”相当于“下底”,“个数”相当于“高”。
(3)联想:如果这堆钢管原来还有很多,最上面是1根,它是什么形状?怎么算?为什么明明像三角形,却不用三角形的面积公式来计算?得出:它其实是一个梯形。
(4)可能会有的学生会和等差数列的方法联系后回答问题。两种思路的对比和联系。
(5)补充:等差数列的有关知识。
三、评价与反思。
学生根据自己的表现能得几颗x,就把几颗x涂上颜色。
三、布置课外作业:
1、在第131页上剪一个三角形和一个梯形。
2、练习11题。
1、一个平行四边形的底长8厘米,是高的2倍,它的面积是(),与它等底等高的三角形面积是。
2、一个梯形的上底是16米,下底是24米,高30米,它的面积是()平方米。
3、一堆钢管,最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有()。
4、一个直角三角形,三条边分别是10厘米、8厘米、6厘米,它的面积是(样的三角形拼成的长方形面积是()。
5、一个三角形和一个平行四边形的底相等,面积也相等,已知三角形的高是32厘米,那么平行四边形的高是()厘米。
6、一个平行四边形的面积是8平方分米,高是2分米,它的底是()。
7、一个近似梯形的花坛,高10米,上下底之和是16米,面积是()。
8、一个三角形的面积是6平方分米,底3分米,高是()。
9、用四根硬纸条钉成一个长方形框架,将它拉成一个平行四边形后,周长(),面积()。
10、三角形的底扩大3倍,高不变,面积会()。
11、0.45公顷=()。
12、两个完全一样的梯形可以拼成一个()形。
13、一个梯形上底与下底的和是15厘米,高是8.8厘米,面积是()。
14、平行四边形的底是2分米5厘米,高是底的1.2倍,它的面积是()平方厘米。
15、梯形的上底增加3厘米,下底减少3厘米,高不变,面积()平方米。
《多边形面积整理和复习》是在学生已经掌握了平行四边、三角形、梯形的面积计算方法的基础上进行教学的。通过整理和复习,使学生加深对公式的记忆,学会灵活运用公式,并在此基础上学习和掌握一些数学思想方法,拓宽知识面,学会与人合作,共同学习提高。五年级学生已经初步掌握复习整理的方法,具备了一定的复习交流能力,所以本节课采取学生课前自由复习,课中交流复习收获、质疑、运用知识、小组合作解决实际问题,课后延伸的形式进行教学。
在本章教学中,迁移类比的思路或思维是我们学习新平面图形求面积的一个基本方向,通过一系列的类比迁移我们依次学习习近平行四边形、三角形、梯形和组合图形的面积,将未知图形的面积转化为已知图形的`面积求解,是学习求图形面积的一种基本编排思路,而推行这种基本的思路,则借助于二种基本的求面积方法,即割补法、拼摆法。所以,在教学上,始终要给学生渗透这种基本的数学思维――由未知转化为已知。实际上渗透一种数学思路要比我们口干舌燥讲多少题都重要,而讲清基本方法则给学生指明了学习的方向。应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。
第三课时三角形面积计算练习课教学内容:练习三第4—10题及思考题教学目标:1、使学生进一步巩固三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。2、使学生深入体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。3、体验数学在生活中的作用,培养学生良好的合作意识和探究意识。教学重点:进一步巩固三角形的面积公式,能正确计算三角形的面积。教学难点:应用公式解决实际问题。教学用具:教学光盘、教学过程:一、基础练习口算第4题。先独立完成在书本上再口答并简单介绍自己的口算方法。二、巩固、提高练习1、练习三第5题要求学生读题,明确题意。让学生根据自己的想法独立找出面积是平行四边形一半的三角形。并说说理由。小结:因为三角形的面积是与它等底等高的平行四边形的一半,这道题目可以把三角形的底和高与平行四边形逐一比较,而用计算的方法就比较麻烦了。2、练习三第6题指名读题,明确题意。让学生交流:三角形的面积与它的什么有关系?有什么关系?怎样才能使三角形的面积是9平方厘米?学生在书上的方格纸中画出三角形。教师巡视,注意对有困难的学生进行辅导。实物投影出示学生画的三角形。并让学生交流不同的画法。3、练习三第7题出示题目,指名读题,明确题意。学生独立答题,师巡视。集体订正:要算这些三角形的面积,为什么要量出它们的底和高?4、练习三第8题集体读题,明确题意。学生同桌交流:要求这块花圃一共可以产鲜花多少枝,必须先算什么?独立答题。集体订正。5、练习三第9题指名读题,明确题意。要求学生在量之前,先想一想准备怎样量再开始动手。回答时,让学生说说是怎样量红领巾的高的。6、练习三第10题指名读题,明确题意。想一想:怎样想能很快计算出三角形的面积,你是怎样想的?7、思考题学生先独立思考,尽可能多的想出每一块板的面积。要求学生在小组里讨论,交流成果。回答时要求学生说明是怎样算的。板书:三角形的面积计算25×22÷2=275(平方米)275×50=1375(枝)答:这块花圃一共可以产鲜花13750枝。
(1)一个平行四边形,底边是5.7米,面积是22.8平方米,高是()米。
(2)一个三角形和一个平行四边形等底等高,如果平行四边形的面积是128平方米,那么三角形的面积是()。
(3)一个梯形,上底是3.4厘米,下底是4.6厘米,高是2.7厘米,则这个梯形的面积是()。
(4)一个平行四边形的底是1.2分米,高是底的'一半,它的面积是()。
(5)一个三角形的底是0.4米,是高的2倍,它的面积是()。
(6)一个正方形的周长是16厘米,它的面积是()平方厘米。
(7)一个梯形的上底是4.5厘米,下底是5.5厘米,高是5厘米,它的面积是()平方厘米。
(8)一个面积是2.4平方米的梯形,上底是1.4米,高是1.2米,下底是()米。
(9)一个平行四边形的底是14厘米,高是9厘米,它的面积是();与它等底等高的三角形面积是()。
(10)工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有()根。
(11)一个三角形比与它等底等高的平行四边的面积少30平方厘米,则这个三角形的面积是()。
(12)一个三角形的面积是4.5平方分米,底是5分米,高是()分米。
(13)一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是()平方厘米。
填空。
1、将一个活动的长方形框架拉成平行四边形,()变小了,()没有变。
2、一个三角形的底和高同时扩大3倍,它的面积将()。
3、在括号里填上适当的单位名称:
小明的高136(),体重是32(),他的课桌面大约是28()。
4、三角形的面积等于与它()的'平行四边形的面积的一半。
5、把一根铁丝围成一个长9分米,宽7分米的长方形,它的面积是()dm2如果把它改围成一个正方形,它的边长是()dm,面积是()dm2。
6、一个三角形的面积是10cm2,底是5cm,高是()cm,与它等底等高的平行四边形的面积是()cm2。
俞静静老师执教的《平行四边行的面积》一课,着重让学生先通过猜想平行四边形的面积计算公式,再通过剪、拼、摆等动手操作的活动来验证猜想的公式,在自主得出平行四边形的面积计算公式的同时,又培养了学生积极参与、团结合作、主动探索的精神。我觉得这是一堂充满生命活力的课堂,也是促进学生全面发展的课堂,很能使学生“五到”,同时对我们平面几何图形的概念教学和高效课堂的建构也起了很好的引领作用。我认为本节课有几大亮点:
一、教学思路清晰,目标明确,重难点突出。
这节课以“激趣导入——自主探究——发现规律——实践应用”为线索,整个教学思路清晰;对三维目标把握准确,达到了知识与技能、过程与方法、情感态度与价值观的有机统一,充分体现了《课程标准》对学生在数学思考、解决问题以及情感与态度等方面的要求;在学生自主探究、合作交流的基础上,老师适时地导,突破了本课的重难点——平行四边形面积公式的推导。这样的设计,符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力。
二、以生活情境导入,注重体现数学内容的生活化,激发了学生的学习兴趣。
以判断停车位面积的大小为生活情境导入,牢牢地抓住了学生的注意力,然后让学生帮助财主解决这一生活问题,引出本节课要研究的内容,激发了学生的探究欲望,使课伊始即有一个良好的开端。
三、重视操作探究,发挥主体作用。
《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。在探究平行四边形的面积公式这一环节时,俞老师给学生提供了充足的时间和空间,让学生采用动手实践、合作学习等多样化的学习方式去自主发现平行四边形的面积计算公式。在共同操作中,学生积极动手、动脑,从不同角度思考,将平行四边形转化成一个长方形,并通过观察讨论,发现了长方形与平行四边形之间的关系。这样既充分张扬了学生的创造个性,也为概括平行四边形面积计算公式提供了丰富的感性活动。
四、注重数学方法和思想的渗透。
在数学课堂渗透科学的数学方法和思想是一项很重要的任务,关系到学生思维的严密性和逻辑性等良好思维品质的培养。俞老师在这方面非常注意。例如,“猜想—验证”、“转化的思想方法”等几种思想和方法学生都得到了很好培养,为今后学生逻辑思维和解决问题能力发展打下良好的基础。
五、练习设计注重层次性,体现了对公式的运用和实践能力的培养。
俞老师设计的练习题是从基础到最容易错的难题,习题精。总体上说,体现了对平行四边形面积计算公式的理解,既有层次性、实践性,又做到了前后照应;既注重让学生直接运用公式计算平行四边形的面积,更注重强化训练一些学生容易出错的底高对应的问题,并且还回过头来解决停车位问题,让学生体会到数学在现实生活中的应用价值,使整节课“圆”满成功。
总的来说,俞老师在教学环节的安排上,既考虑了数学学科的特点,也考虑了学生的心理特征,能够让学生充分利用已有知识经验去探索新知识,在教学环节的处理上有详有略,有扶有放,把教学的'重心落在让学生对平行四边形面积计算公式的探索理解上,注重让学生经历知识的形成过程,有利于培养学生的学习能力。
值得商榷的几点:
1、格子图是作为一种用来测量平行四边形面积的工具,是让学生数的,是用来验证平行四边形面积的一种方法,而不是用来剪—拼的,俞老师在这一块内容的理解上有所偏颇。
2、在引导学生分析平行四边形和长方形的异同点时,能否强调长方形的四个角都是直角,也就是邻边垂直,这样学生在后来的剪拼过程中沿高剪就水到渠成了。
3、学生在剪拼过程中,沿任意高剪和平行四边形面积字母公式的推导这两个环节能否提到前一个环节(这两个环节向老师放在巩固练习中),这样会使条理更清晰,使整个公式的推导过程一气呵成。
4、剪拼后的长方形的长宽和原平行四边形的底高的关系能否让学生总结出来,因为大多数学生在操作过程中已经明了,这样更能让学生享受到成功的快乐,体会到学习的乐趣。
5、要正确处理预计与生成的关系,对没完成的教案要“舍得”,后面的等底等高的平行四边形的面积相等以及“变与不变”的关系都可以留下来让学生自己去探究,而且大多数学生也具备了这个能力。如果有时间的话可以让学生自主探究后再汇报,而不是让优秀的学生直接报一下答案,后进的学生失去思考的机会。
文档为doc格式。
从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。
(一)多机械记忆,缺灵动思考。
在推导平行四边形、梯形和三角形的面积公式时,学生的参与度是很高的。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。不能很清楚的知道平行四边形的底和高与拼成的长方形的长和宽是对应相等的。当一个图形里面出现几条高和底时,有较多的学生不能正确的选择数据进行计算。有些学生甚至把题目中所有的数据都用上了。学生的反应,促使我对课堂教学进行思考,我觉得要从以下三个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后推测出面积公式等实践活动,理解相关面积公式的来龙去脉;其次,在教学过程中也要让学生明白多边形的面积计算公式要选择对应的底和高,并且可以在教学的过程中适当出一些有关这方面的练习,加深学生对公式的理解。最后,学生能够说出来的,作为老师尽量不要代替学生说出来。我老是担心学生,代替学生给说出来,在以后的教学中需要特别注意了。
(二)面积单位进率严重遗忘。
有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,重新进行了面积进率的推导,以其帮助学生回忆以前的'知识。但是作业中的情况反应,仍有错误存在。因此,在平时的练习中,需要引导学生复习容易遗忘的知识点,达到常温常新的目的,以减少遗忘。
(三)审题不清,甚至不会审题。
批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。在写作业的时候常常不注意单位。遇到单位名称不统一时,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。