工程问题的数学教案(通用23篇)
文件格式:DOCX
时间:2023-12-05 16:22:25    小编:飞雪

工程问题的数学教案(通用23篇)

小编:飞雪

教案是教师进行教学评估和反思的重要依据。教案的编写要考虑到学生的实际情况和兴趣特点,以激发学生的学习兴趣和积极性。这些教案范文是经过验证的,是一些教师实际教学中的成果,有一定的参考价值。

工程问题的数学教案篇一

程老师听说呀,咱们班的同学个个都是好样的!上课时,每位同学都能坐得端端正正,而且善于开动小脑筋。今天,咱们也让在座的这些老师们看看我们的精彩表现,好吗?这里,老师还特意为每个组准备了一个礼物盒,咱们来比一比,看看哪个组学得最棒,得到的礼物最多!

师:现在,程老师先请大家欣赏一下秋天里的景色。请看大屏幕!

(课件呈现配乐情景:美丽的秋天)。

师:同学们,你们觉得秋天美吗?

师:确实很美!那你们知道吗,在这些美丽的画面中还藏着好多的数学问题呢!今天这节课,咱们就一起去发现问题,(板书课题:解决问题)并且解决这些问题!

二、学习例1。

师:请看,在这美丽的秋天里,这几个小朋友玩得可开心啦!

(课件出示扑蝴蝶图)。

师:同学们好好看看,左边有几个小朋友?

生:4个。

师:那么,右边呢?

生:2个。

师:通过观察,大家发现左边有4个小朋友,右边有2个小朋友。你们能试着提出一个问题吗?请同桌的同学互相说一说!

(生讨论)。

师:好,谁能把你提出的问题说给大家听听?

生1:4+2=7。

师:4加2等于“7”吗?

生:不是,应该等于6。

师:你再说说,4加2等于几?

生1:4加2等于6。

生1:好。

师:谁再来说说你提出的问题!

生2:合起来有多少个小朋友?

师:真不错,都已经学会提问了!

师:谁还想说说你的问题?

生3:一共有多少个小朋友?

师:瞧瞧!这位同学也会提问啦!他提出的问题也是“一共有多少个小朋友?”。真是好样的`!

师:那你们知道“一共”是什么意思吗?

生:就是合起来。

(生活动,师引导)。

非常棒!你们知道吗?我们还可以用一个符号来表示合起来。

(板书:)。

师:那么,刚才我们提出的问题“一共有多少个小朋友?”。(适时板书:?人)老师在大括号的下面写上一个问号。这就是我们今天要认识的第二位新朋友--问号!问号表示这是一个问题。

师:那么,要解决“一共有多少个小朋友?”,我们该用什么方法来列式呢?

生:加法。

师:你们同意吗?

师:老师也同意!把两个部分合起来,我们就用加法计算。(板书:+)。

师:谁来列一道加法算式?

生:4+2=6。

师:对!这里的“4”表示什么?“2”呢?很好!把左边的“4个”小朋友和右边的“2个”小朋友加起来,一共是6个小朋友!4+2=6。请大家齐读一遍!

(板书:4+2=6。生齐读)。

师:谁还能列一道加法算式?

生:2+4=6。

师:对吗?

三、做一做2。

师:其实啊,这些蝴蝶已经飞到咱们身边来了!看看!每个小组都有一块这样的小白板,白板的左边和右边各有几只蝴蝶。(出示师白板)。

师:请大家先在小组内数一数小白板的左边和右边各有几只蝴蝶,组长负责写在白板上。好了,请组长把小白板拿到桌上来!开始吧!(出示)。

(师巡视,走到一组,停下)。

师:你们也说得很好!我们已经知道了左边有几只,右边有几只,那合起来呢?(手势)合起来可以用我们刚才学过的什么符号表示?(大括号)。

师:同意吗?老师为每个组各准备了一个大括号,小组的同学商量商量,商量好了,就贴上去吧!

师:贴完了吗?好,我来看看!嗯,不错!我再看看其它几个组(巡视),你们都很棒!

师:大括号贴好了,现在你们能提出一个数学问题吗?好,先在小组内说一说,再写上一个“?”,表示你们的问题。(师边举白板边说)。

师:我们来看看,这是第2组的。你们提的问题是什么?(指“?”)你们组谁来告诉大家?(生)。

师:你们组呢?(转向另一组)。

生:也是“一共有多少只蝴蝶?”。

师:其它组的问题也和他们一样吗?好,请同学们拿出练习纸,列式计算吧!组长在小白板上列式!

师:做完了吗?谁来说说你的算式!

生:4+3=7。

师:你们同意吗?哦,你们组一共有7只蝴蝶。

师:很好。还有哪个组的同学说说你们的算式?

工程问题的数学教案篇二

教学内容:

苏教版义务教育教科书《数学》六年级上册70~71页例2、练一练,第73页练习十一第4~7题。

教学目标:

1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

解决用假设的策略时总量变化的实际问题。

教学难点:

理解假设时数量的复杂关系。

教学过程:

一、出示问题,讨论策略。

1、出示例2,读题。

3、你准备怎样假设呢?

二、自主探索,运用策略。

1、出示提问:

(1)这题告诉了我们哪些条件,要求什么问题?

(2)你是怎样理解题中数量之间关系的?

小盒里球的个数+8=1个大盒里球的个数。

2、列式计算:

(1)你能根据假设后的数量关系列示解决吗?

果,看看答案是不是相同。

集体评议,重点讨论球的总数发生了怎样的变化。

3、引导比较:

它们有什么相同的地方吗?

小结。

三、反思比较,内化策略。

1、比较异同。

同桌讨论后全班交流。

2、反思内化。

引导:回顾例1和例2解决问题的过程,你有什么体会?

四、拓展应用,巩固策略。

1、做练一练第1题。

提问:两种不同的假设有什么区别,解题时有什么不同?

让学生列式解答,指名板演。

2、做练一练第2题。

减少了多少。

3、做练习十一第5题。

引导学生课业用三种不同的假设方法说明。

五、全课总结:

1、这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?

2、作业:

完成练习十一第4、6、7题。

工程问题的数学教案篇三

教学目标:

1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。

2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。

3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。

教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。

教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。

教学准备:课件。

教学过程:

一、谈话引入。

1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?

(1)将题目中的信息整理到下面的表格中。

(2)分析表格中的信息,明确解题思路。

引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。

(3)学生独立解答。

一本故事书:27÷3=9(元)。

5本故事书:9×5=45(元)。

2、谈话导入。

他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)。

二、交流共享。

1、课件出示教材第48页例题1。

让学生读题,说说题目中的已知条件和所求的问题。

已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。

所求问题:两人各有邮票多少枚?

提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?

学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。

引导:接下来我们就来学习用画线段图的策略来分析这道题。

3、根据题意画线段图。

(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:

小宁:

多枚()枚。

小春:

(2)追问:你能根据题意把线段图填写完整吗?

让学生在教材的线段图上填一填,完成后组织汇报交流。

小宁:

多(12)枚(72)枚。

小春:

4、看线段图,分析数量关系。

提问:观察线段图,想一想可以先算什么?

(1)学生独立观察思考后,小组交流讨论。

(2)全班交流解题思路。

汇报预测:

解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。

解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。

5、学生独立解答。

引导学生选择一种自己喜欢的方法解答。

6、组织检验。

(1)提问:我们用什么方法进行检验?

(2)追问:检验要分几步进行?

(3)学生独立进行检验,并写出答案。

7、回顾反思。

先让学生在四人小组内说一说自己的体会,再组织全班交流。

8、交流讨论。

在之前的学习中,我们曾经运用画图的策略解决过哪些问题?

三、反馈完善。

1、完成教材第49页“练一练”。

这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。

2、完成教材第52页“练习八”第1题。

这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。

3、完成教材第52页“练习八”第3题。

这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)。

四、反思总结。

通过本课的学习,你有什么收获?还有哪些疑问?

工程问题的数学教案篇四

教学内容:

人教版三年级下册教科书第100页例2,“做一做”和练习二十三第11、12题。

教学目标:

1.让学生经历解决问题的过程,学会用除法两步计算解决问题。

2.通过解决具体问题,让学生获得一些用除法计算解决问题的活动经验,感受数学在日常生活中的作用。

3、在解决实际问题的过程中体验解决问题方法的多样化,进一步培养分析和推理能力。

教学重点:

使学生学会从实际生活中发现问题、提出问题。对连除解决问题能正确求解。

教学难点:

会用多种方法来解答。

教具准备:课件。

【设计意图】通过前面两个课时的教学,现在学生已初步获得了解决问题的经验,为了让学生区分连乘与连除,结合教材特意设计了这一节连除。(具体设计意图负载各个环节后)。

教学过程:

一、基础训练:

(1)口算。

师:今天我们继续学习解决问题,老师带来了一些口算练习,你来?

出示:5×3×2=60÷3÷4=7×7+1=21÷3+9=。

…………。

出示:有30人参加团体操表演,平均分成5行,?

师:能补充问题吗?

引导学生总结出:把一个数平均分成几份,求每份是多少用除法。(齐读)。

【设计意图】口算是学生必须掌握的,两步的口算题给本节课的两部计算埋下伏笔。“发明千千万,起点一个问”学生提出一个问题,往往比解决一个问题更重要。把问题的提出留给学生,让学生做到真正的学习主人。

二、新授例题。

1、找信息搜集数学信息。

【设计意图】“说数学、做数学、创数学”是我校数学研究课题“数学阅读”的主旨,通过指导学生仔细认真的阅读主题图,以便保证学生收集的完整性、也是教会学生看图的基本方法,同时让学生知道了数学离不开阅读。

师:整理题目,出示“这场团体操有60人表演,平均分成了2个大圈,每个大圈平均分成了5个小圈,?”

师:你能补充问题吗?

生:每个小圈有多少人?(学生默读)。

【设计意图】课堂的学习,不应该是一个圆满的句号,而是给学生一个充满遐想的省略号,应留给学生一片未曾开发的滩涂。就像前面说的“发明千千万,起点一个问”学生提出一个问题,往往比解决一个问题更重要。

12。

3、说思路理清解题思路。

师:要求每个小圈有多少人,先要求什么(思考)。

师:谁还能说一说这一题的解题思路。

【设计意图】“说数学”的目标是让每一位学生会说数学,也就是表达自己的思考过程,在教师总结后让学生互相说,既是给养学生成功的体验,也体现了让不同的人在数学上得到不同的发展。

师:你能列式解答吗。

【设计意图】会说不一定会写,让学生在草稿本上把他的想法写下来,也是为了检查学生将解题思路转变成数学符号的一种有效的方法。

5、说意义掌握解题步骤。

师:“60÷2=30(人)”表示什么?

师:是的,要求每个小圈有多少人?先求一个大圈多少人,再求每个小圈有多少人。同学们,今天我们解决问题用的什么计算方法(除法),几步计算呢?(两步计算),这就是我们今天要学习的“运用除法两部计算”解决问题。(板书课题),在解决问题里,我们先要观察图,找到有用的数学信息,再通过有用的数学信息分析问题,也就是确定先求什么,再求什么,最后列式解答。

【设计意图】让学生在说的过程中逐步建立起解决问题要知道先求什么,再求什么,同时也是让学生在说的过程中足部完善自己的表达,获得成功的体验,最后通过师生的交流互动完善板书。

6、写综合算式。类比分步计算。

师:刚才我们是用分步计算的方法,你能写出这个两步计算的综合算式吗?

师:综合算式和他一样的向老师招招手,好吗?

【设计意图】掌握综合算式的一般计算法则是学生必须掌握的,上节课学生已经初步获得了用综合算式来解题的经验,在这里直接放手让学生列综合算式,同时也是为了把课堂还给学生。

三、巩固练习。

100页做一做。

师:请同学们阅读教材第100页的.做一做,然后把你的想法用算式表达出来。

……。

【设计意图】这是一道模仿练习题,老师不过多的讲解,而是让学生独立解答,部分学生完成后并不着急讲解,等待更多的学生完成再讲解,同时也是培养学生倾听的习惯。

四、课堂训练。

1、第104页的第11题。

师:请同学们完成教材第104页的第11题。

…………。

生:能。

【设计意图】通过练习,让学生在比较中学会减除类型的解决问题,加深学生对连除、减除类型解决问题的理解,同是也对学生进行了情感态度价值观的培养。

2、第104页的第12题。

师:请同学们完成教材第104页的第12题。

师:做好的认真思考,我做的对不对?我还有没有其他的方法?

【设计意图】这一题意在培养学生从多角度观察问题,解决问题的能力。在学生学会一种方法后,并不急于评讲,而是鼓励学生从不同的角度分析信息、寻找方法,激发学生探索的欲望、增强他们的信心,逐步提高解决问题的能力。

五、课堂总结。

师:这一节课我们学习了什么?你有什么收获?

【设计意图】课堂的真正主人是学生,学生的学习必须是一个生动活泼的过程,把课堂小结交给学生,让学生在快乐的学习氛围中乐学、爱学。

板书设计。

这场团体操有60人表演,平均分成了2个大圈,1、搜集信息。

每个大圈平均分成了5个小圈,每个小圈有几人?2、理清思路。

先求:每个大圈有多少人。列式计算:60÷2=30(人)(先算什么,再算什么)。

再求:每个小圈有多少人。列式计算:30÷5=6(人)3、列式解答。

答:每个小圈有6人。

工程问题的数学教案篇五

(1)培养良好的审题习惯。一要审数和符号,二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,看能否简算,然后再动手解题。

(2)养成仔细计算、规范书写的习惯。按格式书写,数位对齐,字迹工整、不潦草,保持作业的整齐美观。

(3)养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。

(4)强调检查。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。

(5)合理使用草稿纸。在打草稿的时候,要从左往右,从上到下,有序的打下去。一张写完,再翻一张,估计位置不够不要随意下笔换一个空间大的地方打草稿。检查时,也可从草稿入手。

工程问题的数学教案篇六

(1)多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。

读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。

(2)把“大数”化“小”。

例如,一本书共369页,平均每天看41页,多少天看完?对有困难的学生,只要将原题改为:一本书24页,平均每天看8页,多少天看完?他们往往能脱口而出“3天”。再用“小步子”进行追问:用什么方法算?怎样列式?为什么这样列式?这两题有什么相同和不同?从而使学生领悟到,两题都是求一个数里面有几个几。

(3)联系生活,想象情境。

让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。

(4)列表、画图。

表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。

工程问题的数学教案篇七

1、仔细观察的习惯。通过课堂上仔细观察情境图、操作的过程,发展到留心观察周围事物的习惯。

2、敢于提问的习惯。教师要引导学生不耻下问,随时表扬那些敢于、善于提问题的同学。对于学生的问题,教师要耐心解答。课堂上把提问的权利还给学生。

3、多角度思考的习惯。遇到问题不要局限或拘泥于一个角度思考问题,而是从多个角度去探讨问题的答案,鼓励学生的创新思维、求异思维。

4、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。

如果学生养成了这几种好的习惯,学生的思维灵活度便会大大提高,理解能力也会跟着上升。

将本文的word文档下载到电脑,方便收藏和打印。

工程问题的数学教案篇八

(1)合理强化。

在学困生不合理的知识结构问题解决之后,应进行相应的练习。实施练习的首要原则是增强针对性,做到缺什么补什么,什么弱强化什么;同时,注意及时强化与把握好强化的频率。

及时强化是根据遗忘曲线先快后慢的规律,使学生新获得的知识点和知识结构当堂巩固;强化的频率是指根据掌握、回生的实际情况,缩短或延长强化的周期,以促进问题解决方法的内化。

(2)分解强化。

为了让学困生形成比较稳定、清晰的思路,我们通常采用“分解强化”策略实施训练,即将问题分解为若干个“小步子”,为思维的清晰化提供一个支架,再逐渐将支架拆除。

(3)顺向加工策略。

顺向加工策略,是指不考虑一道题的特殊问题,而是整体考虑该类问题所含变量能组成多少种问题情境,予以全面呈现,一一练习,以此帮助学生有效地形成解决该类型问题的知识系统。

(4)在辅导学困生时,要注意强调第四个步骤。例如,一个圆锥形的模具,底面半径是75px,高是100px。它的体积是多少?学困生往往能选择公式v=13sh,但是算式却列成1/3×3×4。原来,他们直觉地认为是三个数相乘,却忽略了公式的实际意义。因此,强调所需条件,提醒关注已知数据常常是必要的。

工程问题的数学教案篇九

教学内容:

苏教版课标本第十二册7172页、试一试和练一练、练习十四的第13题。

教学目标:

1.使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据题目的特点选择具体的转化方法,从而有效地解决问题。

2.使学生在解决问题的过程中,感受转化策略的应用。

3.使学生进一步积累运用转化策略解决问题的经验,感受转化的多样性。增强解决问题时的转化意识,提高学好数学的信心。

教学重点:

感受转化策略的价值,初步掌握转化的方法和技巧。

教学难点:灵活运用转化的策略解决问题。

教学准备:

多媒体课件、作业纸。

教学过程:

一、教学例1,揭示转化的策略。

1.出示。

师:这是什么图形?(长方形)图中每个小方格的面积都是l平方厘米。

如何求出这个长方形的面积?(54=20(平方厘米))。

2.出示。

师:你能求出这个图形的面积吗?怎样思考?(把左边的三角形剪下来,平移到右边。

去,使原来的图形转化成一个长方形)演示转化过程。(板书:转化)师:转化成的这个长方形与原来的图形面积有什么关系?(面积相等)。

(评析:用较为简单的图形过渡,把它转化为面积相等的长方形。孕伏转化的策略,使学生初步感受转化的作用)。

3.出示例1的两幅图,(作业纸)。

师:这两个图形你们学过吗?

(1)同桌讨论。(数方格,转化(割补))。

(2)动手操作?

(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出数方格,则提示他们进一步想想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。

师:你是怎样进行转化的?

(第一幅图:先割下上面的半圆,再将这个半圆向下平移5格,就转化成了54的长方形了;第二幅图:先把下半部分凸出来的两个半圆割下来,再绕直径的上端旋转180度,补到图形上半部分凹进去的地方,于是这个图形也转化成54的长方形)。

师:转化后的两个图形的面积什么关系?(都等于20格)。

师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂简单)。

(4)总结评价。

师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们今天要学习的解决问题的策略转化。(板书:解决问题的策略)。

(评析:转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问题化为简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验了转化的好处)。

二、回顾转化实例,感受转化的价值。

1.回顾以往转化的经验。

师:其实在我们以前的学习中,已经多次运用过转化的策略,想一想,在哪些地方用到了这种策略?(可适当提示不同领域的转化)。

生可能会说:

a、面积或体积公式的推导过程中用过形的转化。(平行四边形长方形;三角。

形、梯形平行四边形;圆长方形;圆柱长方体;圆锥圆柱)。

b、计算中用过数的转化(异分母分数加减法同分母分数加减法;小数乘除法整。

数乘除法;分数除法分数乘法)。

c、简便计算中用过的式的转化。

2、初步感受转化的价值。

师:这些运用转化的策略解决问题的过程有什么共同点?(化繁为简、化难为易,化陌生的新问题为熟悉的问题)。

板书:新问题熟悉的问题。

师:以后你再遇到一个陌生的问题时,你会怎样想呢?

(评析:学生曾经多次运用转化的策略学习新知识,引导学生对这些过程进行回忆,从策略的`角度重建相关知识的联系,有利于他们理解转化的共同点)。

工程问题的数学教案篇十

教学过程:

一、积累铺垫。

1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)。

2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。

4.从图中你能求出什么?

二、初步感知。

1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。

2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。

3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图,(2)对比交流:

4.现在图有了,你能根据图来求出原来操场的面积吗?

(1)学生尝试,教师巡视。(2)讨论交流:

5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)。

三、再次体验。

2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?

3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的长。)。

4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。

四、深入体验。

(一)第四关:

1.引入:应用画图的策略,我们来闯第四关。

2.分层出示:

(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)。

(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)。

学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)。

到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。

3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?

(二)第五关:

1.引入:第四关我们都闯过了,下面我们要挑战――第五关!

(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。

(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)。

五、全课总结。

工程问题的数学教案篇十一

教学内容:

人教版3年级下册72页例8。

教学目标:

1、使学生感受数学与现实生活的联系,初步学会用所学的有关面积知识解决简单的实际问题。

2、进一步体会解决问题的一般步骤,知道可以用不同的方法解决问题。

重点难点:

学会用所学的有关面积的知识解决简单的实际问题。

教学过程:

一、激情导课。

1、复习。孩子们前面我们学习了面积的相关知识,老师看看大家掌握的如何了?

课件出示,指名回答。

师:看来大家掌握的'很好,这节课我们就利用面积知识来解决生活中一些简单的实际问题,板书课题。

二、民主导学。

(一)任务呈现。

2、生质疑,提条件。

3、(出示情境图)师:工人叔正在测量呢,仔细观察,你了解到哪些信息?生读条件。

4、教师课件出示示意图。照这样铺下去,多少块就铺满了呢?怎样解决呢?学生先初步说出自己的想法。

(二)自主学习。

师:这样行吗?大家快来算一算吧!先独立思考,列式计算,然后在小组内交流你的想法。

(三)展示交流。

1、请小组成员上台板演成果。全班交流。

2、验证。

师:谢谢大家替老师解决了一个大难题,但是这200块中到底算对了没有?怎样验证呢?

3、小结。

(1)师:再遇到这类问题,你会解决了吗?谁能总结一下?让学生明确两种方法分别是怎样解答。

(2)师:回顾刚才的解题过程,我们是怎样做的呢?

4、练习。

师:老师的厨房也想铺上地砖。(课件出示题)你能发现给出的数据和刚才有什么不同吗?(让学生明确这次是直接给出了正方形地砖的面积而不是边长)到底需要多少块地砖呢?独立列式解答。

三、目标检测。

1、出示检测题。

2、结果反馈。请一个学生说正确答案,做对的给自己打3颗星。

3、反思总结。通过这节课你有什么收获?

工程问题的数学教案篇十二

答:5小时后还要35小时就能将水池注满。

解:由题意知,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。

答:甲乙最短合作10天。

解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

所以1/甲=2/17,甲等于17÷2=8.5天。

答:甲单独做这项工程要8.5天完成。

答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

工程问题的数学教案篇十三

本课时学习的是用替换的策略解决实际问题。教学例题是要让学生在解决问题的过程中初步体会替换,发展解题策略。解题的关键就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把学生潜在的、无意识的方法唤醒,使隐含的思想清晰起来。

学情分析本节课的学习者特征分析主要是根据教师平时对学生的了解和学生前面的学习表现而做出的。

学生是合肥市区六年级的学生。

学生有良好的小组合作进行探究的学习习惯。

学生已经掌握了一些解决问题的策略。

教学目标一、知识目标:

二、能力目标:

使学学生在对解决实际问题过程的不断反思中,感受替换策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

三、情感目标:

使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重、难点1、使学生初步学会用替换的策略去分析数量关系,并能根据问题的特点确定合理的解题步骤和选择相应的解题策略。

2、在解决实际问题过程中,感受替换策略对于特定问题的价值,进一步发展分析、综合和简单推理能力。

教学具准备多媒体课件。

教学程序教学内容教学活动学习方式教学策略。

一、复习。

引新。1、提问:

(列表、画图、列举还原)、

2、揭示课题。

二、探究。

新知。

1、出示例题(图文结合)。

2、理解题意。

(1)你从题中获得哪些信息?要我们解决什么问题?

根据回答完成板书:

小杯6个。

小杯的容量720ml。

是大杯的1/3,

大杯1个。

你认为哪个条件是解题的关键?

小杯的容量是大杯的1/3,

它们的关系还可以怎么说?

大杯的容量是小杯的3倍,

现在根据已知的条件能直接求出大杯和小杯的容量各是多少毫升?不能!

那么你有什么好办法吗?

我们可以:

把1个大杯换成3个小杯。

或是。

把3个小杯换成1个大杯。

3、自主探索,研究替换策略。

同学们想到了两种方法来解决,下面请选择一种你喜欢的方法。

(1)先画出换杯子示意图。

(2)然后根据图再列式计算。

4、汇报交流。

生a、大杯换小杯。

1个大杯换成3个小杯。

13=3(个)。

6+3=9(个)。

7209=80(毫升)。

803=240(毫升)。

生b、大杯换小杯。

6个小杯换成2个大杯。

63=2(个)。

2+1=3(个)。

7203=240(毫升)。

2401/3=80(毫升)。

5、检验结果。

怎样知道我们计算得对不对呢?

我们要来检验一下。

这题怎样检验?

生:806=480(毫升)。

240+480=720(毫升)。

符合果汁有720毫升这条件就行了吗?

生:80240=1/3或是。

24080=3。

还要符合小杯的容量是大杯的1/3这个重要的条件才行。

都符合了题目中的条件才说明我们做对。

请大家写上答语。

6、比较方法,提升策略。

完成板书:

小杯6个6+3=9。

1/3720毫升。

大杯1个2+1=3。

仔细观察这两种方法,它们的共同点是什么?

都是把两种不同容量的杯子换成同一种容量的杯子,来计算的。

7、小结方法,揭示课题。

也就是把两种不同的量换成同一种量。

这就是我们今天研究的解决问题的策略替换策略。

1、理解题意。

出示变式题(图文结合)。

还是刚才那道题吗?

与刚才的题目有什么不同?

已知的条件和要求的问题各是什么?

关键句是什么?

大杯的.容量比小杯多20毫升。

还可以怎么说?

小杯的容量比大杯少20毫升。

你会解答吗?

2、自主尝试。

请自己试一试,用我们学习解答例题的方法来解决这个问题。

学生自主画图列式计算。

2、交流方法。

生c、大杯换小杯。

1个大杯换成1个小杯。

7007=100(毫升)。

100+20=120(毫升)。

多20ml。

大杯1个。

生d、大杯换小杯。

6个小杯换成6个大杯。

206=120(毫升)。

720+120=840(毫升)。

8407=120(毫升)。

多20ml。

大杯1个6+1=7720+120。

4、检验结果。

互相检验结果.

生:1006=600(毫升)。

600+120=720(毫升)。

符合已知信息我们就做对了。

4、小结变式题思路。

仔细观察,它们的共同点是什么?

也是把两种不同的量通过替换变成同一种量,这样使复杂的问题变得简单。

组织学生画图、列式解答、研究方法,使学生充分感知替换策略。

引导学生利用两种量之间的关系,想到不同的解决方法,同时发现它们共同的特征。组织学生讨论,再利用多媒体直观演示,丰富学生的感知。

组织学生自己尝试根据两种量之间的关系,继续运用替换策略解决相差问题。运用多媒体直观演示,解决教学中的疑难问题,帮助学生理解替换中,总量变化的疑惑点。

引导学生比较发现替换策略能解决的两种不同情况的问题的特征。充分体会替换策略的价值。

通过自主研究,汇报交流,使学生的语言、思维得到发展,学生通过画图计算感知替换策略。

观察比较、小组讨论、合作交流,引导学生得出结论。

通过尝试算法,汇报交流,进一步理解替换策略,体验它的实用性。

通过比较集体研讨发现问题的不同类型的特征。

画图汇报交流,培养学生自主探究知识的能力。

通过相互评价,激发学生的学习热情。

合作学习,共同研究策略。在合作学习中,相互取长补短,增强合作意识。

(三)、比较例题与变式题。

小组讨论,集体交流。

倍数关系,杯子个数变化,但总量没有变。

相差关系,杯子的个数没有变,而总量却变化了。

根据学生回答完成板书。

三、运用新知,解决问题。1、纸盒问题。

(1)先画出替换示意图。

(2)再交流自己是怎样来解答的。

2、门票问题。

3、练习十七的第1题。

钢笔和铅笔的问题。

4、机动练习。

5、生活实例让学生联系生活实际,独立分析习题,运用所学知识解决实际问题。独立完成,交流反馈。通过解决实际问题,深化新知,充分感受数学知识与生活实际的紧密联系。

五、板书设计解决问题的策略替换。

小杯6个6+3=9(个)720ml。

小杯是大杯的1/3变了没变。

大杯1个2+1=3(个)720ml。

大杯比小杯多20ml没变变了。

大杯1个6+1=7(个)720+120。

工程问题的数学教案篇十四

称球问题是一类传统的趣味数学问题,它锻炼着一代又一代人的智力,历久不衰。下面几道称球趣题,请你先仔细考虑一番,然后再阅读解答,想来你一定会有所收获。

[练习题]。

1.有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的.那堆找出来。

解:依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。

2.有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。

解:第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

3.把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

(1)若a=b,则a、b中都是正品,再称b、c。如b=c,显然d中的那个球是次品;如bc,则次品在c中且次品比正品轻,再在c中取出2个球来称,便可得出结论。如bc的情况也可得出结论。

(3)若ab的情况,可分析得出结论。

工程问题的数学教案篇十五

答案:甲收8元,乙收2元。

解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

答案是22/25。

最好画线段图思考:

增加的'成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。

答案为64:27。

工程问题的数学教案篇十六

本单元教学用替换的方法解决实际问题。替即替代,换则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材在编写上有以下特点。

第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在你知道吗里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。

第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次练一练都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里说说为什么这样替换说说解决这个问题的策略,例2里你准备怎样来解决这个问题,都是着眼于体会数学思想,积累数学方法,感受解题策略。

一、直观的情境引发替换。

例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生说说为什么这样替换,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。

教材让学生列式解答,把替换的思考和方法用算式表示出来。部分学生可能会有困难,他们或者列算式7203=240(毫升),先算1个大杯的容量,或者列算式7209=80(毫升),先算1个小杯的容量。教学应指导学生在这两道算式的前面,先写出63+1=3(个)或者6+3=9(个),用算式表达自己的替换。也通过这样的算式,使替换时的思考数学化、模型化。

检验结果要抓住两点进行:一是果汁总量720毫升,二是小杯的容量是大杯的1/3,只有同时满足这两个关系的答案才是正确答案。教材把检验安排在写答句的前面,有两层意思:一层是先经过检验确认结果,再写出答句是解决问题的程序,也是良好的习惯。另一层是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的精神,是教学应该倡导和培养的。

第90页练一练仍然用图画配合文字呈现问题情境,有助于学生进行替换。通过两个大卡通的提问,指导学生开展替换活动。每个大盒比小盒多装8个球,如果把2个大盒替换成2个小盒,会少装82=16(个)球,7个小盒一共装100-16=84(个)球。如果把5个小盒都替换成大盒,会多装85=40(个)球,7个大盒一共装100+40=140(个)球。学生看着示意图,容易理清这些变化。例1和练一练都有不同解法,这是由于替换策略有不同的具体应用。教材希望学生理解各种解法,体会应用策略的灵活性,但不要求他们一题多解。

例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。你准备怎样来解决这个问题不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如猴子卡通用画图的方法,兔子卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。

猴子卡通画了10只船,每只船上画5个圆表示乘坐5人,先假设乘的都是大船,这些船一共可以坐50人,比实际多8人。于是从一只船上去掉2人,把这只大船换成小船;又从另一只船上去掉2人,也用小船替换大船照这样替换4次,6只大船和4只小船一共乘42人,和全班人数相同,得到了问题的答案。兔子卡通先假设乘了5只大船和5只小船,这些船一共可以乘40人,比全班人数少2人。为了让这2人也乘船,所以把其中1只小船换成大船,得到的答案也是租用6只大船、4只小船。

教材把替换留给学生进行。用猴子卡通的方法,可以在图画里划去一些圆,表示减少乘坐的人数,把大船换成了小船。教学时要让学生知道在一只船上只能而且必须同时划去2个圆,体会每划去2个圆就是进行了一次替换。用兔子卡通的方法,教材里有一张表格,里面填了兔子卡通的假设,空格是让学生替换时用的。要注意的是,教材没有要求学生列式计算。这里有两个原因:一是解决实际问题未必都要列式计算,画图和列表也是解题的形式。教学要鼓励解题形式多样化,发展个性和创造性。二是像例2这样的题算式比较难列,如果列式计算,不仅增加了教学的困难,而且会弱化替换活动,挫伤学生学习的积极性。

仅从表面看,两个卡通的解法是不同的。其实都应用了替换策略,都是先提出一个假设,再通过替换进行大船与小船的调整,逐渐逼近,直至获得准确结果。可见,例2应用替换策略的水平,比例1高了一个台阶。教材要学生研究两种方法的共同特点,就是要体会上述的替换策略。

在猴子兔子卡通的启发下,学生一定会提出其他的假设,如假设10只都是小船,假设1只大船和9只小船并希望按自己的假设画图或列表解答这个问题,甚至少数学生还会想到别的解题形式。教材满足学生的需要,让他们在小组里交流还可以用什么方法找出答案,再次经历解决问题的过程。比比各种假设进行的替换和次数,感受怎样假设能较快地解决问题,进一步体验替换思想和方法。

第92页的练一练安排两道题,仍然体现解决问题形式的多样和灵活。第1题适宜用画图方法解答,分三步指导学生画图。关键是理解给其中几只动物添2条腿的原因,以及给一个动物添2条腿后它成了什么动物,也就是要体会画图时的替换。第2题适宜列表解答,关键是看懂表格里的三点内容:一是开始时怎样假设两种展板块数的?二是用哪种展板替换哪种展板?什么原因?三是为什么一下子就用3块大展板替换3块小展板?明白了这几点,就知道接着该怎样替换,以及如何较快地得出结果。

工程问题的数学教案篇十七

第三课时:整十数加、减整十数(综合练习课)教学内容:综合练习课(p59练习十8~11t及思考题)教学目标:1、知识与技能:练习整十数加减整十数,掌握正确的计算方法。2、过程与方法:通过创设生活情景,感受数学知识在生活中无处不在。3、情感态度与价值观:培养学生思维灵活性。教学重、难点:1、重点:正确计算整十数加减。2、难点:培养学生思维灵活性。教学准备:小黑板,挂图,口算卡,磁性教具教学过程:一、口算练习:40+3090-50100-8095-580-8060+640+20+880-50+440+50-3090-60-10(1)记时,独立计算,集体订正(2)师:说一说,40+30=?你是怎样想的?用小棒摆一摆,在小组里说出计算方法。(3)指名说出计算方法,还有谁的方法不同的?2、算一算,练一练(第8题)师出示口算卡片,开火车进行口算练习。40+3090-50100-8095-580-8060+640+20+880-50+440+50-3090-60-103、听算师报算式,生独立计算,然后集体订正,检查听算能力。10+40+3040+20+3070-40-3060-20-30二、读一读,算一算1、(课件出示p609t)要求:1、读一读,读懂题意。2、指明读题加深理解。3、列式计算,并说一说,你是怎么计算的?2、磁性教具摆出10t要求:1、仔细看图,数一数桃和梨的个数。2、比一比,谁的个数多?3、指出同样多的'部分和多余的部分,4、想一想,从桃里去掉桃和梨同样多的部分,剩下的是什么?5、在小组里说一说谁比谁多,谁比谁少,多几个?少几个?再填空。3、课件出示11t先出示美丽的校园,在逐步出示三个同学的对话,师:从刚才的对话中你知道了什么?学校里有什么树?你能提出什么问题?(1)在小组里提出问题,并自己解答。(2)全班反馈,说出你的问题和算式。(3)说一说你是怎么算出来的?三、思维训练p60的思考题下面每个括号里能填什么数?2.两位数加一位数和整十数第一课时:两位数加一位数和整十数(不进位)教学内容:两位数加一位数和整十数(p61例1和练习十一1~4t)教学目标:1、知识与技能:使学生学会两位数加一位数,整十数不进位加的口算方法,能正确的进行口算。2、过程与方法:经历探索两位数加整十数、两位数加一位数(不进位)的计算方法过程,体验数学与生活的密切联系。3、情感态度与价值观:培养学生的计算能力。教学重、难点:1、重点:提高学生计算能力。2、难点:掌握正确的计算方法。教学准备:捆扎好的练习本,磁性教具。教学过程:一、旧知复习,引入新知。1、30+65+2060+49+4030+6050+2060+4050+502、65是有几个十几个一组成的?29是有几个十几个一组成的?二、创设情境,自主探索今天学校新到了一批书,老师打算发给同学们,我们班有()个同学,我们先算算有多少本书,看够不够发给同学们。1、观察,课件出示主题图要求:从图中你看到了什么?数一数,你知道它们有多少吗?一捆有多少本?数学书有多少本?语文书有多少本?2、小组讨论:看图提出问题,谁能提出不同的问题?怎么能算出来?3、合作探究:如果要你算出有多少本数学书,你能怎样算?想一想,你是怎样列式的?用小棒摆一摆,你是怎么算的?说一说,你是怎么想的?4、再次探究:如果要算出我们班领了多少本书,你能算出来吗?请看图,我们领了多少本?一包语文书和一包数学书有多少本?5、全班反馈:a动手操作,理解口算办法。b总结算法,计算时要注意计算的单位,个位上的数要加在个位上。整十数要加在十位上。6、比较算法,加深理解,让学生认真观察两个算式,这2个算式有什么相同的地方?在计算方法上有什么不同?怎样计算?你是怎么想的?(分组说,后指名全班交流)三、巩固练习,促进理解1、p61的做一做。先在书上完成“做一做”第一题,请同学讲一讲上下两题有什么关系,并举几个例子口头考考其他同学。2、p63的练习十一的第一题和第二题(1)独立计算后集体订正。(2)指名说53+4和20+67是怎么计算的?(3)你是怎么算的?(4)小组互相说一说你是怎么想的?3、出示p63:3图(1)你从图中看到了什么?你能完整说出来吗?(2)你根据这些信息列出算式吗?(4)说出结果,你是怎么算的?四、全课总结。

工程问题的数学教案篇十八

解:

1/20+1/16=9/80表示甲乙的工作效率。

9/80×5=45/80表示5小时后进水量。

1-45/80=35/80表示还要的进水量。

35/80÷(9/80-1/10)=35表示还要35小时注满。

答:5小时后还要35小时就能将水池注满。

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天。

1/20*(16-x)+7/100*x=1。

x=10。

答:甲乙最短合作10天。

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量。

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

解:由题意可知。

1/甲+1/乙+1/甲+1/乙+……+1/甲=1。

1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1。

(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)。

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)。

得到1/甲=1/乙×2。

又因为1/乙=1/17。

所以1/甲=2/17,甲等于17÷2=8.5天。

答案为300个。

120÷(4/5÷2)=300个。

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

答案是15棵。

算式:1÷(1/6-1/10)=15棵。

答案45分钟。

1÷(1/20+1/30)=12表示乙丙合作将满池水放完需要的分钟数。

1/2÷18=1/36表示甲每分钟进水。

最后就是1÷(1/20-1/36)=45分钟。

答案为6天。

解:

即:甲乙的工作效率比是3:2。

甲、乙分别做全部的的工作时间比是2:3。

时间比的差是1份。

实际时间的差是3天。

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期

工程问题的数学教案篇十九

《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”

本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

一、创设情境,学习新知。

1、预设情景。

师:同学们,在节假里你家来了客人你准备做什么呢?

师:星期天的上午李阿姨到小明家来做客。

师:从图。.能得到哪些信息?

生:小明的妈妈让小明给李阿姨沏茶。

3、展示学生不同的方案师:谁愿意上讲台来展示你的设计方案?

师:刚才同学们帮小明设计的沏茶的方案是通过同时做几件事情才节省了时间,在烧水的同时做洗茶杯和找茶叶这两件事,也就是说洗茶杯和找茶叶共花得分钟时间可以在烧水的8分钟之内完成。

这样小明就可以在8分钟以内完成需要11分钟才完成的事情,也就让客人尽快地喝茶了。

4、小结师:我们在做一些事情时,应先确定好做事的先后顺序,然后在有效的时间内尽可能多同时做几件事,能同时做的事情越多,所用的时间就越短。

二、再探新知。

师:原来小明的妈妈要用最拿手的烙饼来招待客人。从图。

能得到哪些信息?(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。

利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)。

1、学生观察、理解图中的内容。

教师提问:“烙一张饼需要几分钟?““烙两张饼呢?”“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?”“一共要烙3张饼,怎样烙花费的时间最少?”2、学生拿出准备好的圆片,圆片的正、反面上分别写上正、反两字来代表饼的正、反面。每烙完一面,就让学生在这一面上用铅笔做上记号。

先让学生试一试,思考烙3张饼,怎样才能使花费的时间最少,然后分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间,并把自己的实践结果记录在老师发的表格中,教师参与到小组活动中。(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)。

3、展示学生的方案。

教师:“谁来给大家说一说,你们小组设计的`方案是什么?”在展示台上投影学生填写的表格。

小组代表来根据表格叙述设计方案,并用图片来演示。几个小组演示完毕后,教师让大家来比较。

“这些方案,哪一种能让大家尽快地吃上饼?”(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)。

4、拓展延伸:

教师:刚才我们一起找到了烙3张饼的最佳方法。请大家想一想,如果要烙4张饼,怎样烙才能尽快吃上饼呢?”小组活动,并用表格记录。

小组代表发言。班内交流,并比较哪个小组的方法最好。

教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?”小组活动,进行记录。通过小组交流,使学生找到最佳方法。

(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)教师:“如果要烙6张饼、7张饼……10张饼,怎样安排最节省时间?”小组讨论交流,说一说自己的发现。

学生在充分交流探讨的基础上,得出结论:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张饼按上面的最佳方法烙,最节省时间。让学生仔细观察表格,看发现了什么?得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。

教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”呢?假如妈妈使用了新式电饼。

工程问题的数学教案篇二十

教学内容:苏教版义务教育教科书《数学》六年级上册68~69页例1、练一练,第72页练习十一第1~3题。

教学目标:

1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、使学生进一步积累解决问题的经验,增强解决问题的`策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

解决用假设策略时总量不变的实际问题,认识假设的策略。

教学难点:

运用假设策略分析数量关系。

教学过程:

一、出示问题,选择策略。

1、以图文结合的方式呈现例1,要求学生边读边看图。

3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?

4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?

二、自主探索,运用策略。

1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?

结合例题中的示意图提问:

一个大杯可以替换成几个小杯?

把1个大杯替换成3个小杯的依据是什么?

由1个大杯可替换成3个小杯,你想到了什么?

小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。

2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?

(1)提出问题后,要求让学生看图思考。

以倒满1个大杯,6个小杯的果汁正好可以倒满2个大杯。

(3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。

3、列式解答:

引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。

4、检验。

通过计算进行检验,并完成答句。

三、回顾与反思,提升策略。

学生交流、汇报。

四、拓展应用,巩固策略。

1、指导完成“练一练”。

(1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。

(3)追问:威慑么这道题假设全部买椅子而不是假设全部买桌子?

很重要。

(5)让学生自主进行检验。

(6)反思小结:解决这个问题的关键是什么?

2、课堂作业:做练习十一第1题。

独立完成,同桌互说自己的想法。

全班交流。

3、做练习十一第2题。

提问:根据填充里的想法,这道题可以怎样假设?还可以怎样假设?

独立完成解答,指名板演。

五、全课总结。

通过这节课的学习,你有什么收获和感想?

工程问题的数学教案篇二十一

为了能更好更全面的做好复习和迎考准备,确保将所涉及的考点全面复习到位,让孩子们充满信心的步入考场,现特准备了小升初数学工程问题练习题。

解:

1/20+1/16=9/80表示甲乙的工作效率。

9/80×5=45/80表示5小时后进水量。

1-45/80=35/80表示还要的进水量。

35/80÷(9/80-1/10)=35表示还要35小时注满。

答:5小时后还要35小时就能将水池注满。

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的.工效乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天。

1/20*(16-x)+7/100*x=1。

x=10。

答:甲乙最短合作10天。

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量。

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

工程问题的数学教案篇二十二

1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。

2、培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。

3、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。

4、通过合作交流,使学生体验到合作的快乐,学习的愉悦。

实物投影、跷跷板乐园图。

用不同的方法解决问题,体会解决问题策略的多样性,提高解决问题的能力。

1、谈话:小朋友爱玩跷跷板吗?今天我们到跷跷板乐园去玩一玩好吗?

2、投影出示跷跷板情境图,问:“我们看看图中的小朋友们在做什么?”让学生仔细观察图。

3、让学生观察画面,提出问题。教师适当启发引导:跷跷板乐园一共有多少人?学生自由发言,提出问题。

从学生喜欢的事物引入,激发学生学习的兴趣。

2、观察了解信息:从图中你知道了什么?

3、小组交流讨论。

(1)应该怎样计算跷跷板乐园一共有多少人?

(2)独立思考后,把自己的想法在组内交流。

(3)选派组内代表在班中交流解决问题的方法。

4、把学生解决问题的方法记录在黑板上。(有一种写一种特别让学生思考还可以怎样算)

5、比较各种方法的异同。明确名种方法的结果都是求跷跷板乐园一共有多少人,只不过在解决问题的思路上略有不同。

6、学生尝试列综合算式。

交流:你是怎么想的?

7、小结。

:使学生在观察事情的发生、发展过程中明确条件,提出问题并自主解决。掌握用多种方法进行解答。

1、练习一的第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的`学生以启发。

2、练习二的第2题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。同时对学生进行尊老爱幼的教育。

:让学生在交流、实践中掌握知识。充分利用主题图的作用。

工程问题的数学教案篇二十三

解:

1/20+1/16=9/80表示甲乙的工作效率。

9/80×5=45/80表示5小时后进水量。

1-45/80=35/80表示还要的进水量。

35/80÷(9/80-1/10)=35表示还要35小时注满。

答:5小时后还要35小时就能将水池注满。

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。

又因为,要求两队合作的天数尽可能少,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能两队合作的天数尽可能少。

设合作时间为x天,则甲独做时间为(16-x)天。

1/20*(16-x)+7/100*x=1。

x=10。

答:甲乙最短合作10天。

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量。

1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据甲、丙合做2小时后,余下的乙还需做6小时完成可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

解:由题意可知。

1/甲+1/乙+1/甲+1/乙+……+1/甲=1。

1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1。

1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)。

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)。

得到1/甲=1/乙×2。

又因为1/乙=1/17。

所以1/甲=2/17,甲等于17÷2=8.5天。

答案为300个。

120÷(4/5÷2)=300个。

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

答案是15棵。

算式:1÷(1/6-1/10)=15棵。

答案45分钟。

1÷(1/20+1/30)=12表示乙丙合作将满池水放完需要的分钟数。

1/2÷18=1/36表示甲每分钟进水。

最后就是1÷(1/20-1/36)=45分钟。

答案为6天。

解:

即:甲乙的工作效率比是3:2。

甲、乙分别做全部的的工作时间比是2:3。

时间比的差是1份。

实际时间的差是3天。

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期

方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1。

解得x=6。

答案为40分钟。

解:设停电了x分钟。

根据题意列方程。

1-1/120*x=(1-1/60*x)*2。

解得x=40。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
工程问题的数学教案(通用23篇) 文件夹
复制