数学课文知识点总结
文件夹
总结是对过去一段时间的工作或学习进行回顾和总结的重要环节。总结的时候要注重思维的创新和拓展,不拘泥于传统的总结方式,可以尝试新的方法和思路。阅读以下范文,可以帮助大家更好地掌握总结写作的技巧和注意事项。
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成 (k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数 中的b=0时(即 )(k为常数,k 0),称y是x的正比例函数。
2、一次函数的图像: 所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。以下是小编为大家收集的初二数学实数的知识点总结,供大家参考,希望对大家有所帮助!
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.
2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.
3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
5.无限不循环小数又叫无理数.
6.有理数和无理数统称实数.
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.
1.平方与开平方互为逆运算.
2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.
5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
1.被开方数一定是非负数.
2.0,1的.算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
谦称:
1、自称:愚、敝、卑、臣、仆。
2、帝王自称:孤、寡、朕。
3、古代官吏自称:下官、末官、小吏。
4、读书人自称:小生、晚生、晚学、不才、不肖。
5、古人称自己一方的亲属朋友用家或舍:如家父、家母、家兄、舍弟、舍妹、舍侄。
6、其他自谦词:
尊长者自称:在上。
晚辈自称:在下。
老人自称:老朽、老夫。
女子自谦:妾。
九、敬称:
1、对帝王:万岁、圣上、天子、圣驾、陛下、大王。
2、对将军:麾下。
3、对于对方或对方亲属的敬称用令、尊、贤。
令:令尊(对方父亲)令堂(对方母亲)令兄(对方哥哥)令郎(对方儿子)令爱(对方女儿)。
尊:用来称与对方有关的人和物。
尊上(对方父母)尊公、尊君、尊府(对方父亲)。
尊堂(对方母亲)尊亲(对方的亲戚)尊命(对方的吩咐)尊意(对方的意思)。
贤:称平辈或晚辈。
贤家(指对方)贤郎(对方儿子)贤弟(对方弟弟)。
仁:称同辈友人中长于自己的人为仁兄。称地位高的人为仁公。
4、称年老的人为丈,丈人。唐以后称岳父为丈人,又称泰山。妻母为丈母,又称泰水。
5、称谓前加“先”表已死,用于敬称地位高的人或年长的人。
称死去的父亲:先考、先父。
称死去的母亲:先妣、先慈。
已死的有才德的人:先贤。
死去的帝王:先帝。
6、君对臣敬称:卿、爱卿。
7、对品格高尚、智慧超群的人用“圣”表敬称,“孔子”为“圣人”,“孟子”为“亚圣”“杜甫”为“诗圣”,后来“圣”多用于帝王,如“圣上”、“圣驾”。
3、角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等。
4、推论(aas)有两角和其中一角的对边对应相等的两个三角形全等。
5、边边边公理(sss)有三边对应相等的两个三角形全等。
6、斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等。
7、定理1在角的平分线上的点到这个角的两边的距离相等。
8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。
9、角的平分线是到角的两边距离相等的所有点的集合。
10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边。
12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
13、推论3等边三角形的各角都相等,并且每一个角都等于60°。
14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
15、推论1三个角都相等的三角形是等边三角形。
16、推论2有一个角等于60°的等腰三角形是等边三角形。
17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
18、直角三角形斜边上的中线等于斜边上的一半。
19、定理线段垂直平分线上的点和这条线段两个端点的距离相等。
20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
22、定理1关于某条直线对称的两个图形是全等形。
23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.
2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.
3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
5.无限不循环小数又叫无理数.
6.有理数和无理数统称实数.
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.
1.平方与开平方互为逆运算.
2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.
5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
1.被开方数一定是非负数.
2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。
1、边:两组对边分别平行;四条边都相等;相邻边互相垂直。
2、内角:四个角都是90°;
3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。
5、正方形具有平行四边形、菱形、矩形的一切性质。
6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。
定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
13、解一元一次方程:
1.解一元一次方程的一般步骤。
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
使方程逐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。
14、一元一次方程的应用。
1.一元一次方程解应用题的类型。
(1)探索规律型问题;。
(2)数字问题;。
(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);。
(5)行程问题(路程=速度×时间);。
(6)等值变换问题;。
(7)和,差,倍,分问题;。
(8)分配问题;。
(9)比赛积分问题;。
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
2.利用方程解决实际问题的基本思路:
首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤。
(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
(3)列:根据等量关系列出方程.
(4)解:解方程,求得未知数的值.
(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
学好初一数学的六大方法技巧。
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。
目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。
提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2分式的运算。
(1)分式的乘除。
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
(2)分式的加减。
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减。
3整数指数幂的加减乘除法。
4分式方程及其解法。
1反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)。
性质:两支的增减性相同;
2反比例函数在实际问题中的应用。
1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
1平行四边形。
性质:对边相等;对角相等;对角线互相平分.
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形.
推论:三角形的中位线平行第三边,并且等于第三边的一半.
2特殊的平行四边形:矩形、菱形、正方形。
(1)矩形。
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质。
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半.
(2)菱形。
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质。
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形.
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.
3梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形.
第五章数据的分析。
加权平均数、中位数、众数、极差、方差。
1、严谨备好每一节课。
人常说:功在课前,因此我在上课前认真备课,钻研了《数学课程标准》、教材、教参,对学期教学内容做到心中有数,不但备学生而且备教材备教法。
学期中,着重进行单元备课,掌握每一部分知识在单元中、在整册书中的地位、作用,思考学生怎样学,学生将会产生什么疑难,该怎样解决,在备课本中体现教师的引导,学生的主动学习过程,充分理解课后习题的作用,设计好练习。
2、把好上课关,提高课堂教学效率、质量。新课标的数学课通常采用“问题情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。
所以在课堂上我想方设法创设能吸引学生注意的情境。在这一学期,我根据教学内容的实际创设情境,让学生一上课就感兴趣,每节课都有新鲜感。
3、虚心请教同组老师。在教学上,有疑必问。由于没有新课标教学经验,所以我的教学进度总是落在其他老师之后。我虚心向他们请教每节课的好做法和需要注意什么问题,结合他们的意见和自己的思考结果,总结出每课教学的经验和巧妙的方法。本学期我将自己在备课中想到的好点子以及遇到的问题整理成“教学反思录”。
4、多听课、讲公开课。在听和讲的过程中,可以学到很多很多适合自己的东西,也可以暴露一些自己平时感觉不到的问题,这是我到实验中学来后最深的体会。使我对以后的教学更加充满了信心。
5、作业及时批改,对于作业存在的问题及时纠正。课后作业是不可缺的一部分是反馈当天所学内容的方法,因此作业必须勤批改并做到有错必改的好习惯。
1、新课标学习与钻研还要加强;
2、课堂教学设计、研究、效果方面还要考虑;
3、多媒体技术在课堂教学中的使用还有待提高;
4、“培优、辅中、稳差”的方法方式还有待完善。
为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。
审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。
练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。
俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。
6.勇于“辩”的习惯。
讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。
每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记。
在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主导作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。
要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。
并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
立足现在,放眼未来,为使今后的工作取得更大的进步,现对本学期教学工作作出总结,希望能发扬优点,克服不足,总结经验教训,以促进教学工作更上一层楼。
一年来,我在工作中,坚持努力提高自己的思想政治水平和教学业务能力,新的时代,新的教育理念,教育也提出新的改革,新课程的实施,对我们教师的工作提出了更高的要求,我从各方面严格要求自己,努力提高自己的业务水平丰富知识面,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步不断努力,现对近年来教学工作作出总结,希望能发扬优点,克服不足,总结检验教训,继往开来,以促进教学工作更上一层楼。
一、坚持认真备课,备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记。
二、努力增强我的上课技能,提高教学质量此文来自优秀教育资源网斐斐,课件园,使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在学生普遍反映喜欢上语文课,就连以前极讨厌语文的学生都乐于上课了。
三、与同事交流,虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足。
四、完善批改作业:布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
五、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
六、积极推进素质教育。,要以提高学生素质教育为主导思想,为此,我在教学工作中并非只是传授知识,而是注意了学生能力的培养,把传授知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的.方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
3推论3等边三角形的各角都相等,并且每一个角都等于60°。
4等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
5推论1三个角都相等的三角形是等边三角形。
6推论2有一个角等于60°的等腰三角形是等边三角形。
7在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
8直角三角形斜边上的中线等于斜边上的一半。
9定理线段垂直平分线上的点和这条线段两个端点的距离相等。
10逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
同学们平时的学习时间是在课上,但是大家要树立一个意识:课前课后也很重要。利用好这些时间,在配合适当的学习方法,学好数学其实并不难。
课前:课前预习很重要,一方面可以先了解上课知识,课上能跟上老师思路,另一方面标记出自己不会的知识点,课上可以根据自己的情况侧重去听。
课上:课上45分钟,大多数同学都很难保证整节课集中精神,这就要求我们课前一定要预习,找到自己不会的知识点,课上尽量理解吸收。还是希望大家课上尽量集中精神,跟随老师的进度了解重点与难点,有利于复习。
课后:课后的时间一般用来复习,大家可以把自己没有掌握的知识点复习一下,也可以对本节所学知识进行检测与巩固。如果课后复习还存在不理解的地方,大家一定要找老师和同学去问清楚。
有了课前课上课后三个阶段,相信大家数学基础基本差不多了,也希望大家继续保持这个习惯。
大家都知道学习数学最重要的是练习,平时多做一些基础题可以锻炼解题熟练度,多做一些中档题可以熟悉考试题型,过于困难的题目不建议大家多做,可以尝试解决了解难度,掌握做题技巧,训练不要盲目,不要钻牛角尖。做题要学会总结,总结哪些题目经常出现,这可能是中考常考题型。有的同学每天都在做题,辅导书用掉一堆却没有提高,这就是盲目做题没有技巧,没有总结。
同学们在做题时多关注一下解题思路、方法、技巧等,掌握做题思路,总结做题技巧,这对考试来说至关重要考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
3同角或等角的补角相等。
4同角或等角的余角相等。
5过一点有且只有一条直线和已知直线垂直。
6直线外一点与直线上各点连接的所有线段中,垂线段最短。
7平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8如果两条直线都和第三条直线平行,这两条直线也互相平行。
9同位角相等,两直线平行。
10内错角相等,两直线平行。
11同旁内角互补,两直线平行。
12两直线平行,同位角相等。
13两直线平行,内错角相等。
14两直线平行,同旁内角互补。
15定理三角形两边的和大于第三边。
16推论三角形两边的差小于第三边。
17三角形内角和定理三角形三个内角的和等于180°。
18推论1直角三角形的两个锐角互余。
19推论2三角形的一个外角等于和它不相邻的两个内角的和。
20推论3三角形的一个外角大于任何一个和它不相邻的内角。
21全等三角形的对应边、对应角相等。
22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等。
23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等。
24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等。
25边边边公理(sss)有三边对应相等的两个三角形全等。
26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等。
27定理1在角的平分线上的点到这个角的两边的距离相等。
28定理2到一个角的两边的距离相同的点,在这个角的平分线上。
29角的平分线是到角的两边距离相等的所有点的集合。
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
把组成总体的每一个考察对象叫做个体;。
从总体中取出的一部分个体叫做这个总体的一个样本.
※2、为一特定目的而对所有考察对象作的全面调查叫做普查;。
为一特定目的而对部分考察对象作的调查叫做抽样调查.
※1、抽样调查的特点:调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.
而估计值是否接近实际情况还取决于样本选得是否有代表性.
※1、一般地,能明确指出概念含义或特征的句子,称为定义.
定义必须是严密的.一般避免使用含糊不清的术语,例如"一些"、"大概"、"差不多"等不能在定义中出现.
※2、可以判断它是正确的或是错误的句子叫做命题.
正确的命题称为真命题,错误的命题称为假命题.
※3、数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.
※4、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.
5、根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.
※1、平行判定公理:同位角相等,两直线平行.(并由此得到平行的判定定理)。
※2、平行判定定理:同旁内互补,两直线平行.
※3、平行判定定理:同错角相等,两直线平行.
※1.两条直线平行的性质公理:两直线平行,同位角相等;。
※2.两条直线平行的性质定理:两直线平行,内错角相等;。
※3.两条直线平行的性质定理:两直线平行,同旁内角互补.
※1.三角形内角和定理:三角形三个内角的和等于180°。
2.一个三角形中至多只有一个直角。
3.一个三角形中至多只有一个钝角。
4.一个三角形中至少有两个锐角。
※1.三角形内角和定理的两个推论:。
推论1:三角形的一个外角等于和它不相邻的两个内角的和;。
推论2:三角形的一个外角大于任何一个和它不相邻的内角.
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.
2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.
3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
5.无限不循环小数又叫无理数.
6.有理数和无理数统称实数.
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.
1.平方与开平方互为逆运算.
2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.
5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
1.被开方数一定是非负数.
2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
初二数学课文知识点总结(模板18篇)
文件夹