实际问题与一元一次方程教学设计(通用16篇)
文件格式:DOCX
时间:2023-12-12 15:40:24    小编:MJ笔神

实际问题与一元一次方程教学设计(通用16篇)

小编:MJ笔神

总结是一个反思和自省的过程,使我们更加明确自己的目标和价值观。如何处理好人际关系,建立良好的人际网络,使自己的生活更加美满和幸福?如果您正在为写总结而苦恼,不妨看看以下小编为您准备的总结范文。

实际问题与一元一次方程教学设计篇一

教后记本节内容是实际问题中的打折销售问题,前面已经学习过销售问题中相关量的数量关系及简单的换算,所以本课内容在知识结构上难度不是很大,但是由于他和实际问题联系密切,学生必须有这方面的生活经验才能达到最好的效果,但是学生年龄小,加上他们缺少生活经验,所以必须在教师的引导下才能更好的去探究。

我们初一数学研究的课题是如何培养学生的自主探究学习的能力,探究性学习不仅是知识的构建与运用、技能的形成与巩固,也包含了生活经验的激活丰富与提升,学习策略的完善,情感的丰富和价值观的形成。在本次教学中我能以学生为主体,以探究为主线,采取合作交流的探究式进行学习,课堂上学生积极主动,不断出现学习的欲望和热情,使学生的知识得到巩固的同时使生活经验、学习方法等得到提高也形成正确的价值观。通过本课的教学,我感到成功的地方有以下几个方面:

比如在引课的时候,通过各种打折甩卖的广告语,引出问题(1)商家把商品打折卖给我们会不会真的赔钱?(2)其中蕴涵着那些数学道理?这样将学生放在具体的问题中,可以激发他们对问题的一种好奇心,也能使学生明确本课的学习方向,以最佳状态投入到学习中去。

在解决问题1中,我也是创设了几个问题情境,比如以黑板擦为例,问5元卖的黑板擦,想知道是赔钱还是赚钱,应该关注什么?而题中缺少什么量?怎样求?如何比较?结果如何?启发学生积极思考,让这些连续的阶段性问题持续的激发学生的学习热情和探究知识的兴趣,促使学习达到最佳境界,对于后面的问题和习题我都采用了同样的处理方式。

本节课的所有题目均由学生自主探究,通过合作独立的写出解题过程。让学生口语表达或板书,创造机会,鼓励学生动手动口,以达到教学要求并借助多媒体展示来指导学生,促进思维能力的发展,最后再指导学生用简练的语言概括教学问题。增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题学会能在不同的角度去探求生活经验从而让学生掌握知识的同时使思想水7和情感态度价值观都得到提高。

在探究的时候,适当掌握时间,能根据学生的探究情况及时引导。从而达到最优的探究效果。

从以上情况我认为在教学中,一定要注重学生积极性的调动。帮助学生装设计恰当的学习活动。让他们发现所学东西的个人意义,营造宽松和谐的学习氛围。教师注重开发生活中蕴含的各种教育因素。使学生感到学习的必要性和趣味性,能更好调动学生投入到自主探究的学习活动中去。当然本课还存在很多的不足,我认为在以下方面。

1、探究的时间还需要考证,时间不易过长,应合理分配。

2、有些题目原计划是有的不在展示台展示。有的学生板书并讲解但展台接触不好改用让学生讲解由于感觉时间不是所以取消。

3、最后学生自己编了一些实际的应用题,计划让学生自己上台去表演,把问题体现出来,但是由于时间的关系,所以本课最精彩的最能掀起高潮的环节没有展示出来。

针对以上的问题,在今后的教学中应该注意以下几个问题:

1、加强课堂教学的驾驭能力,要充分安排时间,有紧有松。

2、多给学生的语言表达的机会,即时表扬和鼓励。

3、多结合生活实际,使学生能置身于问题当中,充分调动学习兴趣。

实际问题与一元一次方程教学设计篇二

知识与技能:能利用方程解决实际问题。

过程与方法:通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

情感态度与价值观:体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

重点:建立电话计费问题的方程模型。

难点:建立电话计费问题的方程模型。

1、导入新课。

前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

2、对问题的初步认识。

问题1:下面表格给出的是两种移动电话的计费方式:

你了解表格中这些数字的含义吗?

师生活动:教师提问,学生思考,回答。

教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

问题2:你觉得哪种计费方式更省钱呢?

师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;。

若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。

讨论后安排学生再次思考,可适当讨论。

3、对问题的深入探究。

问题3:通过大家的`讨论,你对电话计费问题有什么新的认识?

师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

问题4:设一个月内用移动电话主叫为tmin(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

师生活动:教师提出问题,学生思考并制作表格,教师巡视。

教师请学生填写下面的表格,其他同学适当补充。

观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?

师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。

一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析。

教师追问:

(2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。

对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。

问题5:综合以上的分析,可以发现:

当?时,选择方式一省钱;当?时,选择方式二省钱。

师生活动:教师提出问题,学生思考并回答。

4、小结。

请学生回顾电话计费问题的探究过程,回答以下问题:

(1)探究解题的过程大致可以包含哪几个步骤?

(2)电话计费问题的核心问题是什么?

(3)在探究过程中用到了哪些方法?你又哪些收获?

5、巩固应用。

利用我们在“电话计费问题”中学会的方法,探究下面的问题。

如何根据复印的页数选择复印的地点使总价比较便宜?

师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。

6、布置作业。

课本习题1,3。

例题:

分类讨论:

总结:

实际问题与一元一次方程教学设计篇三

活动内容和目的。

活动1观看球赛片段。

活动2认识球赛积分表提出问题。

活动3对问题进行分解。

活动4解决问题。

活动5问题深入化。

创设情境,激发学生学习欲望,引入新课。

展示积分表,学生观察,培养学生的观察思考能力。

引导、分析,为解决问题建立数学模型。

利用数学模型解决实际问题,实现“问题――数学――问题”。

进一步培养学生利用数学模型解决实际问题的能力。

教学过程。

问题与情境。

师生行为。

设计意图。

[活动1]。

展示篮球赛片段,引出积分表问题。

教师:操作课件,播放篮球赛片段。

学生:欣赏球赛。

创设情境,激发学生的学习欲望。

[活动2]。

展示课本96页中赛季全国男篮甲a联赛常规赛最终积分榜。提出问题:。

(1)列式表示积分与胜场数之间的数量关系;。

(2)某队的胜场总积分能等于它的负场总积分吗?

教师:说明积分规则。

学生:观察表格。

教师在学生自由观察表格并发表意见的.基础上引导学生观察表格中横、纵所隐藏着的信息,并建立数学模型。

教师重点关注:。

(1)胜场积分+负场积分=总积分。

(2)解决问题的关键:胜一场积几分,负一场积几分。

在观察表格中培养学生的观察能力,引导学生用数学的方法去观察、思考问题,实现“问题――数学”,激发学生的求知欲。

让学生明确总积分是如何得出的,建立数学模型,并找到解决问题的关键。

[活动3]探究:。

胜一场积几分,负一场积几分。

学生继续观察表格,教师提问题:。

你选择表格中哪一行能说明负一场积几分呢?

学生探究交流得:。

从最后一行数据可以发现:负一场积1分。

教师继续提问:。

胜一场积几分呢?

学生探究交流。

学生可能会用算术法得出胜一场积2分,这时教师应关注:。

1、引导学生通过列一元一次方程,用解方程的方法得到,为最后问题的拓展奠定基础。

2、负一场积1分,胜一场积2分。

培养学生观察能力的同时,帮助学生建立数学模型,让。

[1][2]下一页。

学生明白列一元一次方程是解决实际问题的一种方法。

问题与情境。

师生行为。

设计意图。

[活动4]解决问题。

(1)列式表示积分与胜场数之间的数量关系.

(2)某队的胜场总积分等于它的负场总积分吗?

教师:以上的分析得出的结论是:。

胜一场积2分,负一场积1分。

学生分组讨论交流解决问题(1)。

教师应关注:。

(1)负场数=比赛场数-胜场数。

(2)总积分=胜场积分+负场积分。

(3)问题变式:列式表示积分与负场数之间的数量关系。

学生分组讨论交流解决问题(2)。

解:设一个队胜了x场,则负了(22-x)场,如果这个队的胜场总积分等负场总积分则利用问题(1)的结论,可得:。

2x=22-x,解得x=22/3。

教师应关注:。

在学生与他人交流的过程中获得解决问题的方法,同时也展示自己的解答,既训练了学生的表达能力,也增强了合作交流地信心,营造了良好的学习氛围,使所有学生都能在数学学习中树立自信心,养成思考习惯,增强交流的勇气。

[活动5]。

1、探究。

如果删去积分榜的最后一行,你还能解决这两个问题吗?

2、小结、作业p100t89。

教师提出问题。

教师应关注:。

教师提示:。

可利用各队胜一场积分相等或利用各队负一场积分相等,任选两个胜、负场数不相同的队即可列方程解决。

学生课后思考完成。

教师:通过这节课的学习,你有哪些收获?

学生举手发表自己的想法。

教师应关注:。

通过探究使学生明白在解决问题的过程中体会到解决问题是可以有不同策略的,每一个人都应有自己对问题的理解,并在此基础上形成自己解决问题的基本策略。

通过学生回顾感悟,进一步理解一元一次方程与实际问题的联系,形成一种解决问题的思考方法。

设计说明:通过引导学生观察积分表,从中读取信息,让学生体会到数学源于生活并应用于生活,实现“问题――数学――问题”的数学模型,让学生感受到数不就在我们身边,明白方程是解决实际问题的一般模型。

实际问题与一元一次方程教学设计篇四

调配问题中既有劳力调配问题,又有事物调配的问题,且这类问题的应用较广泛。由于这类问题都可用二元一次方程组来求解,因此较复杂的应用题应放到二元一次方程组的章节中去处理.基于上述原因,本教学过程设计时所安排的例题、练习题、及作业题均以用一元一次方程解决较简单为标准。

实际问题与一元一次方程教学设计篇五

尊敬的各位评委:

大家好,我今天说课的课题是人教版数学七年级上册第三章第四节《实际问题与一元一次方程》。下面我将从教材分析、学情分析、教法与学法、教学过程和板书设计五个方面对本节课的设计进行说明。

首先我们来看教材分析,教材分析包括3部分。

1、教材的地位和作用。

本节课是在学习了解一元一次方程的基础上,进一步探究如何找出实际问题中的相等关系,学习如何用一元一次方程解决实际问题,是实际问题与一元一次方程的第一课时,示范性强,同时也为下节课探究问题做铺垫,在本章中起着承上启下的作用。

根据新课标素质培养的要求通过本节课的学习,我认为应该达到以下教学目标。

2、教学目标。

(1)知识目标:

分析实际问题,寻找相等关系,建立方程模型,并根据问题的实际背景进行检验。

(2)能力目标:

培养学生分析问题,解决实际问题,归纳整理的能力。

(3)情感目标:

培养学生勤于思考、乐于探究的学习习惯,体会数学的应用价值,激发学生学习兴趣,培养学生的爱国情怀和自强不息的精神。

3、教学的重点及难点。

本着课程标准,在吃透教材的基础上,我认为本节课的重点为。

在列方程解应用题的时候找出最正确的等量关系式十分重要,因此本节课的难点为。

难点:找出问题中的相等关系。

下面再从学情分析谈一谈。

七年级学生初学列方程解决实际问题时,往往弄不清解题步骤,不设未知数就直接进行列方程,我认为学生可能存在两方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

还可能存在分析问题思路不同,列出方程不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

(基于以上我对教材和学情的分析,我采用了以下教学方法,和学法指导)。

教法:

教学过程中坚持启发式教学的原则,采用讲练结合、探索发现法进行教学,引导学生从实际生活中抽象出数学问题,充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。

学法:让学生经历由简单到复杂的学习过程,教师设疑提问,学生自己体会解决实际问题的过程并鼓励学生自己归纳总结。

通过以上我对教材、学情、教法与学法的分析,我设计了下面的教学过程:

1、创设情境,引入新课。

本节课开始我将讲解华罗庚的生平,引入新课,这样可以更好地激发学生的学习兴趣。

国际数学家华罗庚,1910年出生于江苏金坛县,被誉为中国现代数学之父。初中毕业后因交不起学费而中途退学,但经过顽强自学完成了高中和大学的全部课程,20岁时进入清华大学工作,6年后前往剑桥大学,他一生的1/5的时间在国外学习。此后,他毅然放弃了美国的优厚待遇,将余生的34年献给了祖国。

(1)提出问题。

你能算出华罗庚活了多少岁吗?

(2)探究问题。

a.他的一生分为几个重要阶段?

b.如果设他活了x岁,各个阶段如何表示?

c.你能根据题意找出相等的关系吗?

(3)解决问题。

他的一生分为了三个阶段:

国内求学工作+出国学习+归国工作=他的一生。

2、例题讲解。

例1、某车间有22名工人,每人每天可以生产1200个螺钉或20xx个螺母。1个螺钉需要配2个螺母。为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人个多少名?分析:

每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套。

螺母的数量=螺钉数量的2倍是本题中特有的相等关系,是解决本例题的重点所在。

每天每人的工作效率x人数=每天的工作量(产品数量),是工作问题中的基本相等关系,上述两者结合起来就能列出方程。本题有两个未知数,在此可以鼓励学生勤于思考,设其中哪个为x都可以。

通过对例1的讲解学习,可以使学生自己寻找问题中的基本相等关系,引导学生体验用一元一次方程解决实际问题的基本过程,让学生突破找相等关系的难点。

为了加深学生对解题过程的理解及自我分析问题能力的`提高,下面安排了例2。我认为例2可以采取教师引导,学生为主体自己写出分析过程,从而师生共同解决实际问题。

1、引导学生自己找出正确的基本相等关系两时段的工作量之和=总工作量。

2、使学生理解在工程问题中把全部工作量简单表示为1,那么人均效率是个平均值,它。

表示平均每人每单位时间完成的工作量。

3、工作量=人均效率x人数x时间。

下面让学生由以上三道题的过程,自己试着总结出用一元一次方程解决实际问题的基本过程。

3、归纳总结。

这样设计,可以让学生自己讨论,自己归纳,从而提高学生的归纳概括能力。

4、巩固练习。

接下来通过巩固练习,让学生自己练习两道问题,第一题是例1的配套问题,第二题是例2的工程问题,检查学生对本节课的掌握情况,以便我可以及时进行补充,也起到了加深理解,巩固知识的作用。(检查学生对本节课的掌握情况,对学生易错点进行纠正,并再次强调如何列一元一次方程,提高学生解题能力)。

5、小结反思。

通过以上的学习,我认为可以让学生自己总结本节课的学习内容,进一步提高学生的归纳概括能力。

6、布置作业。

让学生举一反三,熟练掌握本节课的知识。

我的说课到此结束,谢谢大家!

使学生能在更加贴近实际生活的问题情境中运用所学数学知识,提高分析问题和解决问题的能力。

实际问题与一元一次方程教学设计篇六

一、说教材的地位。

本节是在前面已经讨论过由实际问题列一元一次方程和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题.本节的问题情境与实际情况更接近,因此具有一定难度,根据本例题特点,我设计如下教学目标:在教学过程中理解有关商品销售中所涉及的公式,进而培养学生走向社会,适应社会的能力.

教学重点和难点、关键:。

重点:进一步体现一元一次方程与实际的密切关系,渗透数学建摸思想,培养运用一元一次方程分析和解决实际问题的能力.

难点是正确地列方程。

关键是弄清问题背景,分析清楚有关数量关系,按问题找出可以作为列方程依据的主要相等关系.

二、说教学方法。

在教学过程中,主要采用启发式教学和合作探究式教学方法的综合运用。

三、说学生的学法。

学生根据教材中的问题,采用小组合作探究,从而解决问题,通过教师引领,学生主动参与,从而顺利而充满激情地完成教学.

四、设计思路。

我利用提纲中的几个简单的习题,充分发挥学生的合作交流的意识.让学生体会数学在实际生活中的应用.最后通过研究书中的盈亏问题,可以增加学生的经济知识和经营意识.使他们能更了解市场运作.

五、教学过程。

整个教学过程都以小组合作探究的形式进行,充分体现小组合作探究的作用.教师利用提纲中的习题由简单到复杂,采用层层深入的教学模式。整个过程都是由教师适当引导学生合作完成,课堂气氛比较活跃,学生的参与度很高。

实际问题与一元一次方程教学设计篇七

本节是在前面已经讨论过由实际问题列一元一次方程和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。本节的问题情境与实际情况更接近,因此具有一定难度,根据本例题特点,我设计如下教学目标:在教学过程中理解有关商品销售中所涉及的公式,进而培养学生走向社会,适应社会的能力。

教学重点和难点、关键:

重点:进一步体现一元一次方程与实际的密切关系,渗透数学建摸思想,培养运用一元一次方程分析和解决实际问题的能力。

难点是正确地列方程。

关键是弄清问题背景,分析清楚有关数量关系,按问题找出可以作为列方程依据的主要相等关系。

在教学过程中,主要采用启发式教学和合作探究式教学方法的综合运用。

学生根据教材中的问题,采用小组合作探究,从而解决问题,通过教师引领,学生主动参与,从而顺利而充满激情地完成教学。

我利用提纲中的几个简单的习题,充分发挥学生的合作交流的意识。让学生体会数学在实际生活中的应用。最后通过研究书中的盈亏问题,可以增加学生的经济知识和经营意识。使他们能更了解市场运作。

整个教学过程都以小组合作探究的形式进行,充分体现小组合作探究的作用。教师利用提纲中的习题由简单到复杂,采用层层深入的教学模式。整个过程都是由教师适当引导学生合作完成,课堂气氛比较活跃,学生的参与度很高。

实际问题与一元一次方程教学设计篇八

本节公开课内容是一元一次方程的应用(工程与配套问题)。教学目标是会通过列方程解决“配套问题”和“工程问题”。教学的重、难点是能准确分析实际问题中的数量关系和等量关系,掌握列方程解决实际问题的一般步骤,现将本节课的得失总结如下:

1、设计简单而对本节课有启发作用的前置作业让学生提前完成,使学生在上课前对要学的.知识有一个初步的认识。

2、利用列表分析的方法,形象直观地把已知和未知的条件找出来,有利学生分析理解和找等量关系。

1、小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。这样有利发现问题,培养学生勇气、才能和个性,使学生思维更清晰。

2、组外的交流,如果整个组的同学都完成老师布置的任务,则可以作为外援到其他组进行帮教,并利用加分的评价机制进行激励。通过这样的教学环节,既能对后进生进行帮扶,也能引领和鼓舞优生的学习积极性。这节课课堂学习气氛浓厚,讨论热烈,思维完全放开,有见地的结论不断涌现,达到了预期的教学目标。

1、把应用题的等量关系写出来不利于学生的思维发展,可以改成填空的形式。

2、课堂容量不足,应把重点放在找等量关系和列方程上,解方程部分可省略,这样就可以增加题量。

3、如果能把工作量变式为分数,能提升学生对工程问题的理解。

4、提出问题以后,一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。以上都是有待改进地方。

实际问题与一元一次方程教学设计篇九

本节公开课内容是一元一次方程的应用(工程与配套问题)。教学目标是会通过列方程解决“配套问题”和“工程问题”。教学的重、难点是能准确分析实际问题中的数量关系和等量关系,掌握列方程解决实际问题的一般步骤,现将本节课的得失总结如下:

一、在教学设计上我通过两方面来突破重、难点:

1、设计简单而对本节课有启发作用的前置作业让学生提前完成,使学生在上课前对要学的知识有一个初步的认识。

2、利用列表分析的方法,形象直观地把已知和未知的条件找出来,有利学生分析理解和找等量关系。

二、在教学过程中我采用小组交流与合作的模式:

1、小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。这样有利发现问题,培养学生勇气、才能和个性,使学生思维更清晰。

2、组外的交流,如果整个组的同学都完成老师布置的任务,则可以作为外援到其他组进行帮教,并利用加分的评价机制进行激励。通过这样的教学环节,既能对后进生进行帮扶,也能引领和鼓舞优生的学习积极性。这节课课堂学习气氛浓厚,讨论热烈,思维完全放开,有见地的结论不断涌现,达到了预期的教学目标。

三、课堂应注意改进的方面有:

1、把应用题的等量关系写出来不利于学生的思维发展,可以改成填空的形式。

2、课堂容量不足,应把重点放在找等量关系和列方程上,解方程部分可省略,这样就可以增加题量。

3、如果能把工作量变式为分数,能提升学生对工程问题的理解。

4、提出问题以后,一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。以上都是有待改进地方。

将本文的word文档下载到电脑,方便收藏和打印。

实际问题与一元一次方程教学设计篇十

重点难点。

难点:探究实际问题与一元一次方程的关系。

一、复习:

1.9-3y=5y+5。

2、

二、新授。

分析:这里可以把总工作量看做1。思考。

人均效率(一个人做1小时完成的工作量)为。

由x人先做4小时,完成的工作量为。再增加2人和前一部分人一起做8小时,完成的工作量为。

这项工作分两段完成,两段完成的工作量之和为。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得。

去分母,得4x+8(x+2)=-1701。

去括号,得4x+8x+16=40。

移项及合并同类项,得。

12x=24。

系数化为1,得x=-243.

所以-3x=729。

9x=-2187.

答:这三个数是-243,729,-2187。

例4根据下面的两种移动电话计费方式表,考虑下列问题。

方式一方式二。

月租费30元/月0。

本地通话费0.30元/月0.40元/分。

(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?

解:(1)。

方式一方式二。

200分90元80元。

350分135元140元。

0.4t=30+0.3t。

移项,得0.4t-0.3t=30。

合并同类项,得0.1t=30。

系数化为1,得t=300。

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

三、巩固练习:94页9、10。

四、达标测试:《名校》55页1.2.3.

五、课堂小结:

(1)这节课我有哪些收获?

(2)我应该注意什么问题?

六、作业:课本第94页第9题学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答。

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数。

学生独立解方程方程的解是不是应用题的解。

教师强调解决问题的分析思路。

学生读题,分析表格中的信息。

教师根据学生的分析再做补充。

学生思考问题。

〖〗教师根据学生的解答,进行规范分析和解答。

实际问题与一元一次方程教学设计篇十一

教学目标。

知识技能。

通过探索球赛积分与胜负场数之间的数量关系,进一步体会一元一次方程是解决实际问题的数学模型。

数学思考。

2、认识到由实际问题得到的方程的解要符合实际意义。

解决问题。

对于实际问题能够进行观察思考,并转化为数学问题,然后找到解决问题的关键——利用方程模型列出方程,进而解决问题。

情感态度。

增强学生运用数学知识解决实际问题的意识,激发学生学习数学的热情。

重点。

把实际问题转化为数学问题,会用列方程求出问题的解,并会进行推理判断。

难点。

教学流程。

活动流程图。

活动内容和目的。

活动1 观看球赛片段。

活动2认识球赛积分表提出问题。

活动3对问题进行分解。

活动4解决问题。

活动5问题深入化。

创设情境,激发学生学习欲望,引入新课。

展示积分表,学生观察,培养学生的观察思考能力。

引导、分析,为解决问题建立数学模型。

利用数学模型解决实际问题,实现“问题——数学——问题”。

进一步培养学生利用数学模型解决实际问题的能力。

教学过程。

问题与情境。

师生行为。

设计意图。

[活动1]。

展示篮球赛片段,引出积分表问题。

教师:操作课件,播放篮球赛片段。

学生:欣赏球赛。

创设情境,激发学生的学习欲望。

[活动2]。

展示课本96页中赛季全国男篮甲a联赛常规赛最终积分榜。提出问题:。

(1)列式表示积分与胜场数之间的数量关系;。

(2)某队的胜场总积分能等于它的负场总积分吗?

教师:说明积分规则。

学生:观察表格。

教师在学生自由观察表格并发表意见的基础上引导学生观察表格中横、纵所隐藏着的信息,并建立数学模型。

教师重点关注:。

(1)胜场积分+负场积分=总积分。

(2)解决问题的关键:胜一场积几分,负一场积几分。

在观察表格中培养学生的观察能力,引导学生用数学的方法去观察、思考问题,实现“问题——数学”,激发学生的求知欲。

让学生明确总积分是如何得出的,建立数学模型,并找到解决问题的关键。

[活动3]探究:。

胜一场积几分,负一场积几分。

学生继续观察表格,教师提问题:。

你选择表格中哪一行能说明负一场积几分呢?

学生探究交流得:。

从最后一行数据可以发现:负一场积1分。

教师继续提问:。

胜一场积几分呢?

学生探究交流。

学生可能会用算术法得出胜一场积2分,这时教师应关注:。

1、引导学生通过列一元一次方程,用解方程的方法得到,为最后问题的拓展奠定基础。

培养学生观察能力的同时,帮助学生建立数学模型,让。

问题与情境。

师生行为。

设计意图。

[活动4]解决问题。

(1)列式表示积分与胜场数之间的数量关系.

(2)某队的胜场总积分等于它的负场总积分吗?

教师:以上的分析得出的结论是:。

胜一场积2分,负一场积1分。

学生分组讨论交流解决问题(1)。

教师应关注:。

(1)负场数=比赛场数-胜场数。

(2)总积分=胜场积分+负场积分。

(3)问题变式:列式表示积分与负场数之间的数量关系。

学生分组讨论交流解决问题(2)。

教师应关注:。

(2)方程的解与实际问题的关系。

在学生与他人交流的过程中获得解决问题的方法,同时也展示自己的解答,既训练了学生的表达能力,也增强了合作交流地信心,营造了良好的学习氛围,使所有学生都能在数学学习中树立自信心,养成思考习惯,增强交流的勇气。

[活动5]。

1、探究。

如果删去积分榜的最后一行,你还能解决这两个问题吗?

2、小结、作业p100t89。

教师提出问题。

教师应关注:。

教师提示:。

可利用各队胜一场积分相等或利用各队负一场积分相等,任选两个胜、负场数不相同的队即可列方程解决。

学生课后思考完成。

教师:通过这节课的学习,你有哪些收获?

学生举手发表自己的想法。

教师应关注:。

通过探究使学生明白在解决问题的过程中体会到解决问题是可以有不同策略的,每一个人都应有自己对问题的理解,并在此基础上形成自己解决问题的基本策略。

通过学生回顾感悟,进一步理解一元一次方程与实际问题的联系,形成一种解决问题的思考方法。

设计说明:通过引导学生观察积分表,从中读取信息,让学生体会到数学源于生活并应用于生活,实现“问题——数学——问题”的数学模型,让学生感受到数不就在我们身边,明白方程是解决实际问题的一般模型。

注:本教学设计是云梦县道桥中学夏辉老师在“湖北省xx年初中数学使用新教材暨全国全省一等奖教师优质课展示活动”中的展示课中的教学设计,课堂教学效果较好。

实际问题与一元一次方程教学设计篇十二

本节课是在学生学会了运用等式的基本性质解一元一次方程的基础上学习的,但是在解题过程中,书写理由太费劲,移项的出现使得解一元一次方程有了更简洁的表示方法和解法,但是移项实际上就是等式的性质(在等式的两边同加伙同减同一个代数式,所的结果仍然是等式)的另一种说法,因而移项概念的得出与运用等式的性质解方程是密不可分的,所以我在前置自学中设计了运用等式的性质解一元一次方程的几个题目,并让学生课间做到黑板上,为学生自主探究移项概念做好了铺垫工作;因为这节课的重点是移项法则的应用,因而我又设计了几个巩固移项概念的题组,通过小组合作学习、自主学习等多种方式来解决问题,对移项的概念和法则加深理解和应用;然后自学课本例题,掌握解一元一次方程的基本步骤和算理,并加以巩固应用,让学生体会出解题步骤的简洁性并通过达标测试中的应用问题,使学生进一步体会到解一元一次方程在解决实际问题中的重要性。

我在设计问题时,本想在导入新课时设计一个贴近学生生活的实际问题,最后在学习完解一元一次方程后,让学生运用所学知识解决这个问题,但是考虑到时间问题没有设计,因而对于加强学生学习数学的应用意识做得还不够好。

实际问题与一元一次方程教学设计篇十三

一、教学目标:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

3、积累活动经验。

二、重点和难点。

难点:感受方程作为刻画现实世界有效模型的意义。

三、教学过程。

1、课前训练一。

(1)如果||=9,则=;如果2=9,则=。

(2)在数轴上距离原点4个单位长度的数为。

(3)下列关于相反数的说法不正确的是()。

a、两个相反数只有符号不同,并且它们到原点的距离相等。

b、互为相反数的两个数的绝对值相等。

c、0的相反数是0。

d、互为相反数的两个数的`和为0(字母表示为、互为相反数则)。

e、有理数的相反数一定比0小。

(4)乘积为1的两个数互为倒数,如:

(5)如果,则()。

a、,互为倒数b、,互为相反数c、,都是0d、,至少有一个为0。

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()。

a、b、c、d、00。

2、由课本p149卡通图画引入新课。

3、分组讨论p149两个练习。

4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。

a、+25=310b、+(+25)=310c、2=310d、2=310。

课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。

解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:

7、随堂练习po151。

8、达标测试。

(1)下列式子中,属于方程的是()。

a、b、c、d、

a、b、c、d、

解:设甲队胜了场,则平了场,依题意可列得方程:

解得=。

答:甲队胜了场,平了场。

(4)根据条件“一个数比它的一半大2”可列得方程为。

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为。

四、课外作业p151习题5.1。

实际问题与一元一次方程教学设计篇十四

技能。

1、能根据具体问题的实际意义,检验根的合理性。

2、会利用试误的方法比较两个代数式的大小关系。

数学。

思考。

能结合实际问题背景发现和提出数学问题。

解决。

问题。

情感。

态度。

1、能根据实际问题中的等量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。

2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。

重点。

难点。

在实际问题背景下,如何选择恰当未知数解决实际问题。

教学流程安排。

活动流程图。

活动内容和目的。

小结。

布置作业。

活动2:在上一个问题解决的基础上,更进一步的利用一元一次方程来解决问题。

小结:由学生去梳理整个一节课的内容和数学学习方法。教师明晰。

布置作业:将本节课的知识延伸到课外。

课前准备。

教具。

学具。

补充材料。

1、电脑.

4、多媒体演示文稿.

1计算器。

解释电器的电功率问题。

教学过程。

问题与情境。

师生活动。

设计意图。

活动1。

出示图片,引入课题。

师:出示一组沈阳市世界园艺博览会的照片,并提出问题。

生:思考、计算并回答。

教师关注:学生是否对于该问题感兴趣,是否可以很积极的参与课堂?

1、从学生身边熟悉的事物着手进行研究,进而引起学生的学习兴趣。

2、引导学生利用小学学过的算术方法对问题进行研究,进而可以和后面将要研究的利用方程解决问题的行为形成对比。

问题2:其他班的学生人数如果低于50人,该如何购票?

师:提出问题。

引导学生利用带入特殊值的方法解决问题。

生:分组思考、讨论。

引导学生学会当人数不确定时利用算术方法解决该问题。

师:提出问题。

同时布置小组合作学习的任务和要求:。

(1)要求活动中一人进行记录,至少三人或三人以上进行计算。

(2)要提醒学生注意自己组内每位同学的意见,学会倾听别人的意见。

(3)生:活动。

教师关注:。

(1)学生是否能够很积极的投入到活动中来,是否可以每个人拿出自己的意见。

(2)研讨时间。

1、增强学生的合作意识。

2、在活动中,注意培养学生的求异思维。

3、提高学生在小组合作中的效率。

4、活动中,即使是基础较差的学生,也会有自己的想法和做法,可以激励学生。

去思考和解决问题,进而使不同的学生在数学上得到不同的发展。

(3)学生是否能够很顺利的寻找到问题中所存在的等量关系。

5、学生从小学的算术方法解决问题过渡到利用一元一次。

方程解决问题,体验了知识从特殊到一般的过程。

6、培养学生利用方程的思想解决问题的习惯。

问题5:你是怎样得出这个结论的?你能验证它吗?

师:提出问题。

生:思考并回答问题。

教师关注:。

学生需要从大小两个方面进行验证,观察。

[1][2]下一页。

学生的思维方向是否全面。

1、让学生体验数学知识从猜想到结论的出现,再到验证的全过程。

2、培养学生的估算意识。

3、让学生使用计算器,可以更好的'使用现代的计算工具。

4、发展学生分类讨论的能力。

活动2。

师:提出问题。解决问题前应先解释一下什么是功率。

生:学生独立思考并解决问题。

教师关注:。

在刚才已经解决的问题得到的数学经验基础上,学生是否能够想到设处未知数解决问题。

1、发展学生利用未知数来表示具体数量的能力。

2、培养学生方程建模的思想。

3、进一步积累数学经验。

问题2:如何说明你的猜想是正确的呢?

教师:提出问题。

生:思考并解决问题。

进一步让学生明白一个结论的出现应该是建立在已经验证是正确的基础上的。

教师:提出问题。

生:分组合作交流。

教师关注:学生是否能够利用上题中感受――猜测――验证这种科。

1、进一步让学生学会分类讨论的方法。

2、这个问题有很高的难度,可以最大限。

计你认为能省钱的选灯方。

案。

学的认知方法来解决问题。

度的对学生的认知发起挑战,能提高学生的学习兴趣,给基础较好的学生提供思维继续深入发展的机会,可以让不同的学生在数学上得到不同的发展。

3、真正呈现出数学来源于生活,要反作用于生活。

小结。

由学生谈体会,与学生分享自己所学的知识和感受,一起进行交流。

教师明晰。

尽可能让学生梳理本节课的知识脉络和数学方法,还可以让学生在情感态度价值观方面谈出自己的体会,将该节课进行画龙点睛。

布置作业。

1、习题2.4----6题、8题。

2、通过网络查询来调查一下沈阳各个旅游景点的买票方式,为我们同学的出游设计最佳的购票方案。

3、作一组调查,看看自己家所使用各类电灯价格和使用寿命,进而替妈妈设计家里最省钱的用灯方案。

将本节课的知识延伸到课外,在应用方程建模思想解决问题的同时,提高学生应用数学的能力,让学生感觉到数学在人们生活中的作用,进而对数学产生更大的兴趣。

教学设计说明。

本节课借助于两个具有实际背景的问题来培养学生列方程解应用问题的能力。

整个学习过程的设置,充分以学生已有的生活经验和数学经验为前提,以培养学生利用方程解决实际问题为目标,以新课程标准为指导思想。在活动一中,重点引导学生由小学的算术方法解决问题转化到利用方程建模的思想解决问题。活动二则在活动一的基础上,引导学生利用刚刚掌握的方法直接列方程解决实际问题,进一步在问题的解决基础上,更深一步提出了最优化选择的问题,这个问题其实更适合应用不等式或线性方程来解决,安排在这里,是使学生除了建立一种利用数学建模的方法解决问题外,还可以为将来研究和学习不等式及线性方程打下基础。

小结中,注重引导学生梳理出本节课的知识脉络,同时让学生感受利用方程建模思想解决问题的思维习惯。

在布置课后作业中,分为两层,首先要求学生利用寻找等量关系列一元一次方程的方法解决实际问题,另外,通过两个课后调研的开放性问题,培养学生应用数学的能力,令学生感受到数学来源于生活,也要反作用于生活。

本文章更多内容:1-2-下一页。

上一页[1][2]。

实际问题与一元一次方程教学设计篇十五

课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,引导学生从身边的问题研究开始,主动寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流.在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法.使学生经历建立一元一次方程模型并应用它解决实际问题的过程,体会方程的作用,掌握运用方程解决简单问题的方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识.

本节的重点是建立实际问题的方程模型,通过探究活动,可以进一步体验一元一次方程与实际生活的密切关系,加强数学建模思想,培养学生运用一元一次方程分析和解决实际问题的能力.由于本节问题的背景和表达都比较贴近生活实际,所以在探究过程中正确建立方程是主要难点,突破难点的关键是弄清问题的背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.切实提高学生利用方程解决实际问题的能力.

从“课程标准”看,在前面学段中已有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程.即对于方程的认识已经经历了入门阶段,具有一定的感性认识基础.但学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经历过自己的努力来克服困难的过程中体验如何进行探究活动,而不是代替他们思考,不要过早给出答案,应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思考,使其获得更大的收获.

知识与技能:

2.会通过移项、合并同类项解一元一次方程.

1.会将实际问题转化为数学问题,通过列方程解决问题.

2.体会数学应用的价值.

会设未知数,并能利用问题中的相等关系列方程,对于列出的方程能用“移项”等方法来解决手机收费问题,进一步了解用方程解决实际问题的基本过程.

通过学习,使学生更加关注生活,增强用数学的意识,从而激发其学习数学的热情.

难点:将实际问题转化为数学问题,通过列方程解决问题.

采用探究、合作、交流等教学方式完成教学.

采用多种媒体辅助教学.

一、创设情境,导入新课(观看大屏幕)。

二、学习新课,探究新知。

展现问题:

小明的爸爸新买了一部手机,他从电信公司了解到现有两种移动电话计费方式:

他正为选择哪一种方式犹豫呢?你能帮助他做出选择吗?

(一)算一算:

一个月通话200分钟,按两种计费方式各需交费多少元?300分钟呢?

通话时间,全球通,神州行。

[设计意图:这里用表格形式给出答案,便于学生对后面问题的分析.]。

(二)议一议:

(1)累计通话t分钟,用“全球通”收费多少元?

(2)累计通话t分钟,用“神州行”收费多少元?

(3)对于某个通话时间,两种计费方式的收费会一样吗?

(三)解一解:

设累计通话t分钟,两种计费方式的收费会一样.

则:

0.6t=50+0.4t,

移项,得0.6t-0.4t=50,

合并,得0.2t=50,

系数化为1,得t=250.

由上可知,如果一个月通话250分钟,那么两种计费方式的收费相同.

(四)想一想:

怎样选择计费方式更省钱呢?(可分组交流)如果一个月内累计通话时间不足250分钟,那么选择“神州行”收费少;如果一个月内累计通话时间超过250分钟,那么选择“全球通”收费少.

(五)试一试:

根据以上解题过程,你能为小明的爸爸做选择了吗?如果小明的爸爸活动较多,与外界的联系一定不少,手机使用时间肯定多于250分钟,那么,他应该选择“全球通”,否则选择“神州行”.

(六)猜一猜:

假如你爸爸也遇到同样问题,请为你爸爸作出选择?

三、巩固训练,能力提升。

1.方程6x+a=12与3x+1=6的解相同,则a=()。

a.1b.2c.3d.4。

2.某蔬菜生产基地10月份上市青菜x万千克,11月份上市青菜是10月份的4倍还多5万千克,那么两个月份共上市青菜()万千克。

a.3x+3b.4x+4。

c.5x+5d.6x+6。

3.一列火车长为150米,以每秒15米的速度通过600米隧道,从火车进入隧道算起到这列火车完全通过隧道所需时间是()秒。

a.30b.40c.50d.60。

4.有一根竹竿和一条绳子,竹竿比绳子短2米,把绳子对折后比竹竿短1.5米,则竹竿长()米.

a.3b.4c.5d.6。

5.三个数的比是5∶6∶7,它们的和是198,则这三个数分别是()。

a.33、44、55b.44、55、66。

c.55、66、77d.66、77、88。

四、知识回顾,归纳总结。

1.不同层次学生对本节知识认知程度(可谈收获及感受);

2.用一元一次方程分析和解决实际问题的基本过程(师生共同总结)。

五、布置作业,巩固新知。

1.基础作业:教材84页第4题,85页第10题。

2.课外探究:某学校在暑假将带领该校“科技能手”去北京旅游,甲旅行社说:“如果校长买全票,则其余学生可以享受半价优惠”;乙旅行社说:“包括校长在内,全部按全票价6折优惠”;若全票价为40元.

(1)如果学生为3人或7人时,两个旅行社各收费多少?

(2)学生数为多少时,两家旅行社的收费一样?

[设计意图:及时了解学生学习效果,调整教学安排,通过课后探究,独立思考,自我评价学习效果,使得基础知识和基本技能在头脑中留下较深刻的印象。

实际问题与一元一次方程教学设计篇十六

这节课主要讲了一道实际应用题,是关于足球比赛的。这道题都是来源于生活,又作用于生活,提供学生生活中熟悉的材料作背景,学生学习兴趣很高。并且本节课采用活动―探索―合作―交流的形式,培养了学生的团结协作能力、勇于探索的精神。使学生在轻松熟悉的环境中完成了学习任务。自我感觉设计比较合理,题目适当,时间恰当,并注重知识的前后衔接,照顾更多的中差生。

不足之处:

过高估计学生,导致对学生在课堂上出现了很多小问题,今后应加强细节的设计和全面考虑。学生的讨论与合作学习还需加强,讨论问题还不够深入,多数时间还是以个别回答为主,虽然许多个别回答非常精彩,但仍需注意讨论形式的变化,让学生从合作学习中有所提高。另外,还需加强的是学生发现问题能力的培养,多数问题的发现还是在教师的指导下完成的。如果能达到学生提出问题,小组讨论,全班解决,那效果更佳。

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
复制