可能性教案人教版(优质14篇)
教案是根据教学目标和学生特点,有针对性地安排教学内容和教学方法。教案的评价标准应符合教学内容和教学要求,能够客观地评估学生的学习水平。以下是小编为大家收集的教案范文,供大家参考。希望这些范文能够给大家带来一些启示,助力教师编写一份优秀的教案。大家可以借鉴其中的教学目标、教学内容、教学活动、教学方法等方面的设计,根据自己的教学实际进行灵活调整,以提高教学效果。记住,一份好的教案能够为教学活动的顺利实施提供有力支持。赶快动手起草一份属于自己的教案吧,祝大家教学顺利!
可能性教案人教版篇一
杨德申。
联系电话:5180481。
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
单元教学目标:
1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2、能按照指定的要求设计简单的游戏方案。
3、理解中位数在统计学上的意义,学会求中位数的方法。
4、根据数据的具体情况,体会“平均数”“中位数”各自的特点。
教学建议。
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
2.加强学生对中位数在统计学意义上的理解。
3.本单元内容可用4课时进行教学。
第一课时。
课题:等可能性与公平性。
教学内容:p98.主体图p.99.例1及练习二十第1-3题。
教学目的:
1、通过游戏活动,体验事件发生的等可能性和游戏规律的公平性,会求简单事件发生的可能性。
2知道判断游戏公平性的方法是看事件发生的可能性是否相等。
3能从事件发生的可能性出发,根据指定的要求设计游戏方案。
4能对简单事件发生的可能性作出预测。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:能从事件发生的可能性出发,根据指定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。
教学准备:主体图挂图,硬币,转盘。
教学过程:
一、情境导入。
(出示情境图)下课了,同学们在操场上玩,我们一起去看一看他们都在玩什么游戏呢?
同学们在玩的过程中涉及到许多的数学知识,今天这节课我们一起来研究一下。
二、新课学习。
1、学习例1,感受等可能性事件的等可能性。
师介绍足球比赛前抛硬币开球的规则。
你认为用抛硬币决定谁先开球的方法公平吗?说说你的理由。
今天这节课我们就来学习和公平性相关的知识-可能性。[板书课题]。
2、抛硬币试验。
现在拿出课前准备的硬币,我们来做抛硬币的实验。看看结果是不是真的和我们说的一样。
分组合作抛硬币试验并做好记录(每个小组抛40次)。
抛硬币总次数。
正面朝上次数。
反面朝上次数。
汇报交流,将每一组的数据汇总,并与实验前的猜测进行对比。
为什么有的组记录值比1/2小,有的组记录值却比1/2大?
师:1/2只是理论上的结果,因为随机事件的概念值是建立在大量重复实验的基础上的,所以抛40次硬币时,结果会出现偏差大,这也是政党的。当实验的次数增多时,正面朝上的概率和反面朝上的概率会越来越接近1/2。
出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。用抛硬币来决定谁先开球是公平的。
三、练习。
1、p99做一做。
指针停在红色、蓝色、黄色区域的可能性分别是多少呢?
既然这个转盘设计得不公平,那你们能不能重新设计一个转盘,使这个游戏规则变公平呢?
2、p100第2题。
出示一个被平均分成4份的s转盘,其中红、黄、蓝、绿各占1份。
问:指针停在这四种颜色的可能性各是多少?
如果转动指针100次,估计大约会有多少次指针是停在红色区域呢?如果出现疑问可进行小组讨论。
一定会是25次吗?
师:这是理论上的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转动100次时,有可能会偏离这个结果,这也是正常的。
老师转动此转盘,决定由男或女先开始走棋。
3、练习二十第3题。
为什么不公平?(面积最大的那个面投掷后朝上的可能性最大)。
试验,验证结果。
4、练习二十第1题。
那就正方体骰子来决定每次所走棋的步数公平吗?说说你的想法。
男女生掷骰子走棋。
四、课内小结:通过今天的学习,你有什么收获?
课后反思:
第二课时。
教学内容:p101.例2及练习二十一第1-3题。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重点:会用分数来描述一个事件发生的概率。
教学难点:让学生认识到基本事件与事件的关系,即花落在每个人手里的可能性与落在男生(或女生)手里的可能性的关系。
教学准备:主题图、扑克牌、转盘。
教学过程:
一、谈话引入:
二、新授。
1、出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
调查本班第一排男生和女生的实际人数(男生4人,女生2人)。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是1/6。
2、画图转化,直观感受。
生发表意见,全班交流。
我们可以画图来看看同学们的想法是否正确。(画图).
师:从图中可以发现,每一个人得花的可能性是1/6,6人中有2人是女生,就有2次被传到的可能,所以妇女同学表演节目的可能性是2/6,男同学是4/6。
问:如果游戏总人数仍旧是6人,怎样调整才能使游戏公平?他们的可能性又分别是多少?
练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
3、小结。
4、巩固练习。
完成p.101.做一做。
问:指针停在转盘每一个扇形区域的可能性是多少?
转盘指针停在红、黄、蓝三种颜色区域的可能性各是多少?
为什么指针停在红色区域的可有性是3/8?
如果转动指针80次,大约会有多少次指针停在红色区域?(转运指针80次,则指针停在每个小区域的次数大致相等,即为80÷8=10次,而红色占3个区域,所以指针停在红色区域的次数大约就是10×3=30次)。
在实际的操作中,停在各个区域的次数一定跟我们计算的结果一致吗?
师:这是理论的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转运80次,有可能会偏离这个结果,这也是正常的。
三、练习。
完成练习二十一。
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
问:9张卡片,摸到每张卡片的可能性是多少?
摸到单数的可能性是多少?双数呢?
这个游戏公平吗?说说你的理由。
在这个游戏中,小林一定会输吗?
你能设计一个公平的规则吗?
2、第三题,
问:乙猜对的可能性是多少?猜错的可能性是多少?你觉得这个游戏规则公平吗?
乙一定会输吗?
先独立思考,再小组合作,全班交流。
四、课内小结:通过今天的学习,你有什么收获?
五、作业:p102第二题,学生在独立设计,全班交流。
补充练习:说出下列事件发生的可能性是多少?
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
教学反思:
可能性教案人教版篇二
一、教学目标:
1、掌握有特殊数量关系的连除问题。
2、会解决有关小数除法的简单实际问题。
3、能够根据实际情况用“进一”法或“去尾”法取商的近似值。
4、培养分析问题、解决问题的能力。
5、在教学中渗透环保教育。
二、教学重、难点。
教学重点:1、掌握“双归一”应用题的数量关系。
2、根据实际情况采用“进一法”和“去尾法”取商的近似值。
三、教学过程:
(一)基础训练。
【口算】。
3.2÷1.6=0.46÷0.2=19×0.8=2.8÷0.07=。
2.4÷30=0.36÷0.3=0.7×1.4=5÷2.5=。
(二)新知学习。
【典型例题】。
1、学习例11:
出示例11:
(1)读题、审题,理解理意。
(2)想一想,可以先算什么?
(3)独立解题。
(4)汇报做题方法。
(5)小结解题方法:
分析应用题时,我们要弄清楚题目的数量关系,再选择适当的方法进行解答。
2.学习例12:
(1)出示第(1)题:
(2)学生独立解题。
(3)2.5÷0.4=6.25(个),需要6.25个瓶子,但瓶子数应当是整数,如果用四舍五入法保留整数,应是多少个瓶子?(6个)。
但我们要根据实际情况,采用“进一法”来求近似数,也就是无论十分位上的数是多少,都要往整数部分进一。
【小结】怎样用进一法和去尾法解决实际问题?
(三)巩固练习。
【基础练习】。
1.书p32做一做。
2.书p33做一做。
3.书p34第1题。
4.书p35第6题。
【提高练习】。
5.书p34第2题。
6.书p34第3题。
7.书p35第7题。
8.书p35第8题。
【拓展练习】。
9.书p35第9题。
10.书p35第10题。
(四)全课总结。
1.这节课你学会了什么?
2.怎样用进一法和去尾法解决实际问题?
(五)教学效果评价(小测题)。
1.书p34第4题。
2书p34第5题。
教学反思:其实有关解决总是的思路分析,学生早在三、四年级就已经掌握,因此本课对成绩较好的同学而言是计算的巩固练习课,但对于理解能力较差的学生而言则是一大难点。因为条件较多,分析起来的中间问题较多,且例题、做一做及课后练习的数量关系各不相同,只有学生在正确分析数量关系后才能列式解答,所以教师要尤其关注学困生,加强个别辅导。
本课内容能真正体现数学与生活的密切联系,能激发学生的学习热情,能使他们学会具体问题具体分析,所以是一种意义重大的课。
为使其意义突显,我在课上请学生举例说一说“进一法”与“去尾法”在生活中的应用。同时,我还以此为周记题材,让同学们去发现生活中的实际问题,并运用今天所学去灵活判断。
练习六第10题学生出现两种解法:
解法一:50000/10000*6.3*4=126(吨);这种解法是将一个月看成四周,求的是8月份这片森林“大约”可以吸收多少二氧化碳。
解法二:50000/10000*(6.3/7)*31=139.5(吨)。这种做法则是先求出一天可吸收的二氧化碳,再求31天共可以吸收的二氧化碳。
在这里应该用第二种方法列式。因为题目明确指出要求的是“8月份这片森林一共可以吸收多少二氧化碳”,即隐含了8月有31天这个条件。如果问题改为“平均每个月这片森林一共可以吸收多少二氧化碳约多少吨”时则可用第一种解法,因为每个月的天数不确定,既有可能是28、29天,还有可能是30、31天,但无论有多少天,一个月都大约有4周。
可能性教案人教版篇三
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
单元教学目标:
1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2、能按照指定的要求设计简单的游戏方案。
3、理解中位数在统计学上的意义,学会求中位数的方法。
4、根据数据的具体情况,体会“平均数”“中位数”各自的特点。
教学建议。
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
2.加强学生对中位数在统计学意义上的理解。
3.本单元内容可用4课时进行教学。
第一课时。
课题:等可能性与公平性。
教学内容:p98.主体图p.99.例1及练习二十第1-3题。
教学目的:
1、通过游戏活动,体验事件发生的等可能性和游戏规律的公平性,会求简单事件发生的可能性。
2知道判断游戏公平性的方法是看事件发生的可能性是否相等。
3能从事件发生的可能性出发,根据指定的要求设计游戏方案。
4能对简单事件发生的可能性作出预测。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:能从事件发生的可能性出发,根据指定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。
教学准备:主体图挂图,硬币,转盘。
教学过程:
一、情境导入。
(出示情境图)下课了,同学们在操场上玩,我们一起去看一看他们都在玩什么游戏呢?
同学们在玩的过程中涉及到许多的数学知识,今天这节课我们一起来研究一下。
二、新课学习。
1、学习例1,感受等可能性事件的等可能性。
师介绍足球比赛前抛硬币开球的规则。
你认为用抛硬币决定谁先开球的方法公平吗?说说你的理由。
今天这节课我们就来学习和公平性相关的知识-可能性。[板书课题]。
2、抛硬币试验。
现在拿出课前准备的硬币,我们来做抛硬币的实验。看看结果是不是真的和我们说的一样。
分组合作抛硬币试验并做好记录(每个小组抛40次)。
抛硬币总次数。
正面朝上次数。
反面朝上次数。
汇报交流,将每一组的数据汇总,并与实验前的猜测进行对比。
为什么有的组记录值比1/2小,有的组记录值却比1/2大?
师:1/2只是理论上的结果,因为随机事件的概念值是建立在大量重复实验的基础上的,所以抛40次硬币时,结果会出现偏差大,这也是政党的。当实验的次数增多时,正面朝上的概率和反面朝上的概率会越来越接近1/2。
出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。用抛硬币来决定谁先开球是公平的。
三、练习。
1、p99做一做。
指针停在红色、蓝色、黄色区域的可能性分别是多少呢?
既然这个转盘设计得不公平,那你们能不能重新设计一个转盘,使这个游戏规则变公平呢?
2、p100第2题。
出示一个被平均分成4份的s转盘,其中红、黄、蓝、绿各占1份。
问:指针停在这四种颜色的可能性各是多少?
如果转动指针100次,估计大约会有多少次指针是停在红色区域呢?如果出现疑问可进行小组讨论。
一定会是25次吗?
师:这是理论上的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转动100次时,有可能会偏离这个结果,这也是正常的。
老师转动此转盘,决定由男或女先开始走棋。
3、练习二十第3题。
为什么不公平?(面积最大的那个面投掷后朝上的可能性最大)。
试验,验证结果。
4、练习二十第1题。
那就正方体骰子来决定每次所走棋的步数公平吗?说说你的想法。
男女生掷骰子走棋。
四、课内小结:通过今天的学习,你有什么收获?
课后反思:
我为这学生准备了大量教具,包括情境图、主题图、做一做及练习2的转盘,长方体及正方体的骰子、同学们也都准备了硬币。由于准备充分,且整节课教学环节以操作、游戏贯穿,所以学生忘我地投入到学习全过程,教学效果相当好。
下面谈谈自己在备课过程中的几点思考:
1、对本课情境图使用的分析。我曾听过几位教师执教此内容,许多人都是直接用录像由足球开赛引入,可谓直奔主题。但我觉得本课校园生活的情境图内蕴含大量可能性教学的素材,不仅今天的例题足球开赛可以由此引入,连做一做及练习二十中的3道题也都可以以这幅情境图来衔接。而且,例2、例3的主题图也“镶嵌”其中。因此,在本课的新授、练习中我都力求充分利用主题图展开,它使教学更流畅,同时也使学生感受到生活中充满数学。
2、对抛硬币实验的思考。抛硬币次数如果太少,那么正反的可能性也许会与理论值1/2偏差较大。抛硬币次数如果太多,那么课堂宝贵的时间又会因此而浪费,所以,我采用了小组合作然后全班汇总的方式。每组要求有一名记录员,其他同学共计抛20次。通过组间竞赛比一比哪一组操作得既迅速,又安静。这样的竞赛促使学生较安静、快速地完全了实验活动。全班操作结果,正面朝上次数与理论值(10次)误差最大的是3个,其中有4个小组正面朝上的次数正好占总次数的1/2。当我再次引导学生汇总全班结果时,太巧了,正面朝上的次数又恰巧是总数的1/2。
3、对巩固练习安排的思考。我借助情境图,以右下角下棋的游戏为载体。首先由转转盘决定男女生下棋谁先走来完成做一做第1题。当学生回答出不公平,并提出改进方案后,我顺引出练习二十第2题,要求学生思考并回答,再用此公平的转盘决定男女生谁先走(咱们班男生选的蓝色,女生选的红色,如果转到其它两种颜色则重来)。当决定了某方先走后,就要抛骰子看走每次走几步了。这时,我将练习二十第3与第1题结合起来,对内容进行适当改编。指出长方体骰子由男生掷,正方体骰子由女生掷,此时男生大呼不公平,在辨析过程中,学生不知不觉地完成了两题的内容,最后由男女生在我自制的棋盘上“拼杀”了一盘,结果了今天的新课。
第二课时。
教学内容:p101.例2及练习二十一第1-3题。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重点:会用分数来描述一个事件发生的概率。
教学难点:让学生认识到基本事件与事件的关系,即花落在每个人手里的可能性与落在男生(或女生)手里的可能性的关系。
教学准备:主题图、扑克牌、转盘。
教学过程:
一、谈话引入:
二、新授。
1、出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
调查本班第一排男生和女生的实际人数(男生4人,女生2人)。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是1/6。
2、画图转化,直观感受。
生发表意见,全班交流。
我们可以画图来看看同学们的想法是否正确。(画图).
师:从图中可以发现,每一个人得花的可能性是1/6,6人中有2人是女生,就有2次被传到的可能,所以妇女同学表演节目的可能性是2/6,男同学是4/6。
问:如果游戏总人数仍旧是6人,怎样调整才能使游戏公平?他们的可能性又分别是多少?
练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
3、小结。
4、巩固练习。
完成p.101.做一做。
问:指针停在转盘每一个扇形区域的可能性是多少?
转盘指针停在红、黄、蓝三种颜色区域的可能性各是多少?
为什么指针停在红色区域的可有性是3/8?
如果转动指针80次,大约会有多少次指针停在红色区域?(转运指针80次,则指针停在每个小区域的次数大致相等,即为80÷8=10次,而红色占3个区域,所以指针停在红色区域的次数大约就是10×3=30次)。
在实际的操作中,停在各个区域的次数一定跟我们计算的结果一致吗?
师:这是理论的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转运80次,有可能会偏离这个结果,这也是正常的。
三、练习。
完成练习二十一。
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
问:9张卡片,摸到每张卡片的可能性是多少?
摸到单数的可能性是多少?双数呢?
这个游戏公平吗?说说你的理由。
在这个游戏中,小林一定会输吗?
你能设计一个公平的规则吗?
2、第三题,
问:乙猜对的可能性是多少?猜错的可能性是多少?你觉得这个游戏规则公平吗?
乙一定会输吗?
先独立思考,再小组合作,全班交流。
四、课内小结:通过今天的学习,你有什么收获?
五、作业:p102第二题,学生在独立设计,全班交流。
补充练习:说出下列事件发生的可能性是多少?
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
教学反思:
我感觉本课最大难点是例题的教学,而例题教学中的最大难点又在于花落在每个人手里的可能性与落在男生组(或女生组)手里的可能性的关系。因为去年曾听过一节此内容较精彩的研讨课,但那位优秀的教师在例题教学过程中也是“步履维艰”。
我尝试分析了一下例题难在何处?主要原因是这里男生组与女生组表演的可能性正好相等,难以激发起学生探究的欲望。有的学生错误地认为游戏中只有男生组和女生组,所以男生组(或女生组)获胜的可能性就应该是1/2。(因为有两个组,男生组和女生组分别占其中的一份)。其次,例题如果采用直观形象的色块来帮助理解比较容易突破难点,但主题图中人数太多,用转盘画图示来表示不方便。针对以上原因,我在教案设计时将观察人数由例题的18人减少为(6人),这样绘制转盘时就能即快捷又方便学生观察探究了。其次,我将例题的等可能性事件变为非等可能性事件。当我对第一排的同学宣布完游戏规则后,全班男生大呼“不公平”。此时,我就紧抓其“不公平”的心理引导他们深入思考,最终从数学可能性的角度发现其概率的不同,男生组表演节目的可能性是4/6,女生只有2/6。
学生们的困惑与争议:在课后,我要求学生将可能性知识与现实生活相联系。他们谈到了商场购物后的促销活动经常运用转盘,所有转盘获奖区域的面积总是很小,所以获奖的可能性也就小。但他们又提出困惑:转盘中的几个等级常常是分散重复排列的,如:一等奖、二等奖、三等奖、一等奖、二等奖、三等奖……。如果把转盘中所有一等奖的区域都集中到一起,那么这时获奖的可能性是不是会有变大呢?近1/2的学生指出:可会性变大。因为以往转动转盘时,由于获奖区域较小,所以指针很容易因偏离获奖区域一点而与大奖失之交臂。可如果将其放在一起后,发生偏离的可能性会变小,那么获将的可能性也就增加了。还有近1/2的学生从面积的大小来思考,认为可能性不变。当然也有少数“两面派”,他们认为从理论上来说,获奖可能性不变,但在实际操作中,应该可能性增加。通过讨论,最终大家达成共识,获奖可能性的大小应该不变。
可能性教案人教版篇四
刘静静。
一、教材说明:
《统计与可能性》是义务教育课程标准实验教科书五年级上册98-100页内容。根据学生的年龄特点和认知水平,小学数学教材对可能性这一内容分两次进行了集中编排。本单元内容是在三年级上册基础上的深化,内容是简单的等可能性事件,等可能性事件与游戏规则的公平性是紧密相联的。我从整体上把握教材知识结构,注意统计知识与概率知识的联系,从学生已有的知识经验出发,通过设计各种活动,在课堂上使得孩子们每一次游戏活动都富有深刻的数学内涵,让他们在玩中学,在学中悟。
二、教学目标:
(2)、过程与方法:培养学生思维的有序性和创新意识,提高学生运用知识解决生活中问题的能力。
(3)、情感态度与价值观:通过创设游戏情景,让学生主动参与“数学实验”,在与他人的合作过程中,增强互助合作精神。
教学重点:。
体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。
教学难点:
用分数表示可能性的大小,理解随机思想。
三、学情分析。
五年级的学生,已经具备较强的自主学习的能力,对可能性大小能做出定性的描述,有一定的随机意识,所以我遵循学生已有的知识水平,课堂活动中,我充分放手让学生自主合作探究学习。
四、说教法、学法:
根据本课内容的特点,采用“实验探究法”,创设贴近学生生活、生动有趣的问题情景,丰富多彩的游戏活动,营造一个动手实践,自主探索与合作交流的氛围,让学生在游戏中观察、猜测、验证与交流,有效地理解和掌握知识。相机渗透猜想、验证的学习方法。
五、说教学过程:
为了能更好的突出重点、突破难点,结合新课标思想,让学生在玩中学,学中悟。将本节课的教学设计分为四个环节:
(一)、情景激趣,导入新知。
为了让学生尽早进入学习状态,激发学生的学习兴趣,我设计了如下的情景:学校正在组织足球比赛,比赛开始前,体育老师要决定哪个班先开球。你能想一种方法来帮助他吗?学生可能会出现多种想法,比如:抛硬币法、石头剪刀布法、转盘法、黑白法等。
(二)、实践探索,深入体验。
第一步:动手实验,获取数据。
课件出示实验要求,学生动手试验。
第二步:分析数据,初步体验。
请各个小组汇报实验结果填到总统计表。
引导学生观察、分析数据后讨论得出:正面朝上和反面朝上的次数是非常接近的,可能性是相等的。
第三步:阅读材料,加深体会。
如果我们继续抛下去,会是怎样的结果呢?这是历史上数学家做过的抛硬币实验数据(课件出示)。
设计思路:【通过让学生观察数据,发现规律,再次体会等可能性。】。
第四步:通过师生共同小结引导学生用1/2表示等可能性。
(三)、游戏活动丰富体验。
玩飞行棋(出示飞行棋的图)。
我把课本上的习题进行处理,将做一做和习题1、2、3有机整合,沟通它们之间的内在联系,根据学生实际重组教材,把它们串成一个连环游戏:。
(1)先让学生根据自己的经验说玩法。
把全班分成红、黄、蓝三队,进行游戏。
(2)接着游戏前决定哪队先开始?引出用转盘来决定,先设计这样一个转盘,
各队学生肯定认为这个转盘不公平,“为什么不公平?”引导学生说一说指针停在红、黄、蓝色区域的可能性分别是多少,用分数表示。
既然这个转盘不公平,“你会设计一个公平的转盘吗?”学生可能会想出两种方案:一、把1/4的红色涂成其他颜色。二、把这个转盘平均分成三份,分别涂成红、黄、蓝。
设计思路:【运用等可能性的知识放手让学生动手设计出公平的转盘,有效地突破难点。】。
(3)、选骰子。
转盘选定了哪个小队先开始,我在这里设计两种骰子,如果你是队长你会选哪个?为什么?
设计思路:【再次让学生体会,感悟,巩固等可能性知识。】。
(4)开始飞行棋游戏。
最后掷骰子玩飞行棋,有的队赢了,有的输了,如果再玩一次,输的队有没有可能赢?为什么?让学生体会随机事件的存在,渗透随机观念。
(四)、拓展延伸。
最近我们小镇上的购物抽奖活动正在火热进行中,具体情况是这样的:每粒特效钙片两元,每购买一粒特效钙片送你一次猜谜机会。规则:早上,商贩从1---200号中任抽一个号放到箱子里,傍晚揭示谜底,猜中者奖现金20元。说说你对这种购物抽奖活动的看法。
六、说板书设计:
抛硬币。
正面:
可能性相等1/2公平。
反面:
我在板书设计上力求做到中心突出,简洁明了,条理清晰便于学生观察,吸引学生的注意力,提高教学效果。
刘静静。
可能性教案人教版篇五
教学内容:p.98.主体图p.99.例1及练习二十第1-3题。
教学目的:
1、认识简单的等可能性事件。
2、会求简单的事件发生的概率,并用分数表示。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:验证掷硬币正面、反面朝上的可能性为12。
教学准备:主体图挂图或投影,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。
教学过程:
一、信息交流。
1、学生交流收集到的相关资料,并对其可能性做出说明。
师出示收集的事件,共同讨论。
2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。
二、新课学习。
1、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?
生举例…..
2、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊240001201211988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近12。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是12。
三、练习。
1、p.99.做一做。
2、练习二十第1---3题。
四、课内小结。
通过今天的学习,你有什么收获?
课后反思:
第二课时。
教学内容:p.101.例2及练习二十一第1-3题。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重、难点:让学生认识到基本事件与事件的关系。
教学准备:投影仪、扑克牌。
教学过程:
一、复习。
说出下列事件发生的可能性是多少?
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
二、新授。
1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。
出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是118。
2、画图转化,直观感受。
(1)每一个人得花的可能性是118,男生得花的可能性是多少呢?
生发表意见,全班交流。……..
我们可以画图来看看同学们的想法是否正确。画图……..
生:从图中可以发现,每一个人得花的可能性是118,两个人就是218,……9个人就是918,女生的可能性也是918。
(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
(3)解决复习中的问题。
拿到蓝色球的可能性是……。
3、小结。
4、巩固练习。
完成p.101.做一做。
(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。
三、练习。
完成练习二十一。
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
2、第二题,学生在独立设计,全班交流。
3、第三题,独立思考,小组合作,全班交流。
四、课内小结。
通过今天的学习,你有什么收获?
课后反思:
第三课时。
教学内容:p.103.例3及练习二十二第1-3题。
教学目的:
1、通过罗列出两人玩“剪子、石头、布”的所有可能的结果,计算出其可能性。
2、了解采用“剪子、石头、布”游戏的公平性。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重、难点:不重复、不遗漏的列出所有可能的结果。
教学准备:投影仪、生收集生活中的等可能性事件。
教学过程:
一、复习。
1、生交流收集的等可能性事件,并说明其发生的可能性。
2、计算发生的可能性,首先看一共有多少种可能的结果,再看发生的事件又几种,最后算出可能性。
二、新授。
1、同学们都会玩“石头、剪子、布”的游戏,谁能和老师一起玩?游戏……。
这样确定谁胜谁败公平吗?
生发表意见。
下面我们就用可能性的指示,看看这个游戏是否公平?
2、罗列游戏中的所有可能。
可交流怎样才能将所有的可能都列出来,方法的交流。
小丽石头石头石头。
小强剪子布石头。
结果小丽获胜小强获胜平。
3、通过观察表格,总结。
一共有9种可能;小丽获胜的可能有3种,小强获胜的可能也是3种,平的可能也是3种。所以小丽获胜的可能性是39,小强获胜的可能性是39,二者相等,所以用“石头、剪子、布”的游戏来决定胜负是公平的。
4、反馈练习。
p.103.做一做。
重点说明:一共有多少种可能,如何想的。
注重学生判断的方法多样化,(1)计算出单数、双数的可能性;(2)其他方法,如双数只有一个6,而单数则有两个,因此末尾出现单数的可能是双数的两倍,因此这是不公平的。
三、练习。
1、练习二十三第一题独立完成,集评。
2、练习二十三第二题可以采用初步判定,然后罗列验证的方法。
3、练习二十三第三题制定游戏规则,小组内合作完成!
四、课内小结。
通过今天的学习,你有什么收获?
课后反思:
可能性教案人教版篇六
教学内容:p.105--106.例4、例5及练习二十三。
教学目的:
1、了解中位数学习的必要性。
2、知道中位数的含义,特别是其统计意义。
3、区分中位数与平均数各自的特点和适用范围。
4、通过对中位数的学习,体会中为数在统计学上的作用。
教学重、难点:
教学准备:投影仪。
教学过程:
一、导入新课。
姓名李明陈东刘云马刚王明张炎赵丽。
成绩/米36.834.725.824.724.624.123.2。
这是一组同学在体育课上掷沙包的成绩统计表,你从这个表中得到哪些信息?
生交流。
二、新课学习。
1、提问:你可以用一个数来表示这一组的同学掷沙包的水平吗?
生2:可以用他们的平均数来表示。
计算平均数得27.7,发现和平均数相差太远。
分析:为什么会出现这样的情况?
2、认识中位数。
中位数:把一组数据按大小顺序排列后,最中间的数据就是中位数,它不受偏大偏小数据的影响。
把掷沙包的成绩数据进行大小排列,找出最中间的数来表示这组同学掷沙包的一般水平。
辨析:中位数是一组数据按大小顺序排列后,最中间的数。
3、小结。
平均数、中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,最好选用中位数来表示这组数据的一般水平。
4、教学例5求一组数据的中位数。
出示数据,问:用什么数来表示这一组的一般水平?
(1)求平均数。
(2)按大小排列(从大到小,从小到大),求中位数。
(3)矛盾:一共有偶数个数最中间的数找不到?
讨论……………..结论:一组数据中有偶数个数的时候,中位数是最中间的两个数的和除以2。
计算出中位数来。
(4)比较用平均数还是中位数合适。
小结:区分平均数、中位数的适用范围。
5、在上面的数据中如果增加杨东的成绩2.94米,这组数据的中位数是多少?
排列大小,找出中位数。
6、课内小结。
什么叫中位数?和平均数的区别。
三、练习。
练习二十三。
1、第1--2题。
2、第3题。
课后作业第4题。
四、课内小结。
通过今天的学习,你有什么收获?
课后反思:
课题:事件发生的可能性。
教学内容:p.98.主体图p.99.例1及练习二十第1-3题。
教学目的:
1、认识简单的等可能性事件。
2、会求简单的事件发生的概率,并用分数表示。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:验证掷硬币正面、反面朝上的可能性为12。
教学准备:主体图挂图或投影,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。
教学过程:
一、信息交流。
1、学生交流收集到的相关资料,并对其可能性做出说明。
师出示收集的事件,共同讨论。
2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。
二、新课学习。
1、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?
生举例…..
2、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近12。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是12。
三、练习。
1、p.99.做一做。
2、练习二十第1---3题。
四、课内小结。
通过今天的学习,你有什么收获?
课后反思:
第二课时。
教学内容:p.101.例2及练习二十一第1-3题。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重、难点:让学生认识到基本事件与事件的关系。
教学准备:投影仪、扑克牌。
教学过程:
一、复习。
说出下列事件发生的可能性是多少?
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
二、新授。
1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。
出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是118。
2、画图转化,直观感受。
(1)每一个人得花的可能性是118,男生得花的可能性是多少呢?
生发表意见,全班交流。……..
我们可以画图来看看同学们的想法是否正确。画图……..
生:从图中可以发现,每一个人得花的可能性是118,两个人就是218,……9个人就是918,女生的可能性也是918。
(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
(3)解决复习中的问题。
拿到蓝色球的可能性是……。
3、小结。
4、巩固练习。
完成p.101.做一做。
(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。
三、练习。
完成练习二十一。
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
2、第二题,学生在独立设计,全班交流。
3、第三题,独立思考,小组合作,全班交流。
四、课内小结。
通过今天的学习,你有什么收获?
课后反思:
第三课时。
教学内容:p.103.例3及练习二十二第1-3题。
教学目的:
1、通过罗列出两人玩“剪子、石头、布”的所有可能的结果,计算出其可能性。
2、了解采用“剪子、石头、布”游戏的公平性。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重、难点:不重复、不遗漏的列出所有可能的结果。
教学准备:投影仪、生收集生活中的等可能性事件。
教学过程:
一、复习。
1、生交流收集的等可能性事件,并说明其发生的可能性。
2、计算发生的可能性,首先看一共有多少种可能的结果,再看发生的事件又几种,最后算出可能性。
二、新授。
1、同学们都会玩“石头、剪子、布”的游戏,谁能和老师一起玩?游戏……。
这样确定谁胜谁败公平吗?
生发表意见。
下面我们就用可能性的指示,看看这个游戏是否公平?
2、罗列游戏中的所有可能。
可交流怎样才能将所有的可能都列出来,方法的交流。
小丽石头石头石头。
小强剪子布石头。
结果小丽获胜小强获胜平。
3、通过观察表格,总结。
一共有9种可能;小丽获胜的可能有3种,小强获胜的可能也是3种,平的可能也是3种。所以小丽获胜的可能性是39,小强获胜的可能性是39,二者相等,所以用“石头、剪子、布”的游戏来决定胜负是公平的。
4、反馈练习。
p.103.做一做。
重点说明:一共有多少种可能,如何想的。
注重学生判断的方法多样化,(1)计算出单数、双数的可能性;(2)其他方法,如双数只有一个6,而单数则有两个,因此末尾出现单数的可能是双数的两倍,因此这是不公平的。
三、练习。
1、练习二十三第一题独立完成,集评。
2、练习二十三第二题可以采用初步判定,然后罗列验证的方法。
3、练习二十三第三题制定游戏规则,小组内合作完成!
四、课内小结。
通过今天的学习,你有什么收获?
课后反思:
可能性教案人教版篇七
教学目标:
1、通过复习和整理,进一步认识《观察物体》、《统计与可能性》及植树问题的相关知识,解决一些实际问题。
2、通过复习和整理,进一步理解知识间的相互联系,提高综合运用数学知识解决实际问题的能力,体会数学的价值,增强数学意识,发展数学思考。
教学过程:
先和同桌进行交流。
然后集体交流。
1、请你找出书本上相关的《观察物体》、《统计与可能性》的题目。
2、完成书本第9、15题。
3、交流题目。
第一部分:统计与可能性
(一)连线。
10个红球 摸出的肯定不是红球。
8红2绿 摸出的红球可能比绿球多。
5红5绿 摸出的肯定是红球。
1红9绿 摸出的红球和绿球可能差不多。
10个绿球 摸出的红球可能比绿球少。
(二)应用题。
3、手工组做了50朵花,送给幼儿园14朵,剩下的每3朵装一盒,可以装多少盒?
6、养场有奶牛200头,肉牛的头数比奶牛的3倍还多50头,肉牛有多少头?
7、每辆面包车坐22人,每辆大客车坐49人三年级有100名学生去公园游览。
(1)5辆面包车够吗?
(2)2辆大客车够吗?
(3)2辆面包车和1辆大客车行吗?
第二部分:植树问题
先填空,再列式计算。
1、把一根木料锯3次,能锯成( )段。如果要锯成6段,需要锯( )次。
2、把一根木料锯成4段,每锯一次要3分钟,一共要锯( )分钟。
3、在20米的路边种树,从一端隔4米种一棵,一共要种( )棵。
4、6只兔子一排做操,每两个兔子之间相隔2米。队伍长( )米。
5、一条走廊15米,每隔3米放一盆花。如果两头都放,一共要( );如果两头不放,一共要( );一头放一头不放,一共要( )
6、小明家住四楼,他每上一层楼要走12级台阶,小明从一楼到四楼要走( )级台阶。
7、一条马路长56米,从头到尾共插8面彩旗,相邻两面彩旗之间相距( )米。
8、一座楼房每上一层要走18级台阶,小明家住四楼,要走( )级台阶。
9、一个正方形花圃周长20米,在它的四周每隔2米放1盆花,一共可以放( )盆。如果在一个长20米的跑道一边,照这样放,一共可以放( )盆。
10、一根50厘米的钢条,锯成5厘米长的小段,一共要锯( )次。
11、学校通道的一侧插红旗,每隔5米插一面。从起点到终点共插了10面,这条路有( )米长。
1、通过今天对这些知识的复习,你在原来学习的基础上有什么进步?
2、你认为今天谁的表现不错?为什么?
可能性教案人教版篇八
1、学生能够列出简单试验所有可能发生的结果,知道事件 发生的可能性是有大小的。
2、使学生能够对一些问题简单事件发生的可能性作出描述。
3、培养学生分析问题,解决问题的能力。
4、在引导学生探索新知的过程中,培养学生合作学习的意 识以及养成良好的学习习惯。
1、使学生能够列出简单试验所有可能发生的结果,知道事 件发可能性是有大小的。
2、能够对一些简单事件发生的可能性作出描述。 教具准备 电脑课件、转盘、纸杯、白球、黄球、红球、盒子。
一、激情导入,提示课题
同学们,你们课间喜欢做游戏吗?在游戏前怎样决定谁先玩 的呢?石头、剪刀、布这三种手式哪种最厉害呢?想和老师 比试比试吗?如果老师和人们一起玩,你们认为有什么结 果?学生发言(可能赢、可能输、也可能平)师生共同班几 次,充分体验。 今天这节课我们就继续研究有关可能性的问题。(板书课题)
二、实验探索,学习新知
活动一:摸名片
活动二:抛纸杯
1、猜想: 纸杯抛向空中落地时有几种可能。学生独立思考后回答。到 底谁说得对呢?我们一起来做个试验。
2、实验: 每个人重复抛5 次,并把实验结果记录下来。
3、与同伴说一说,可能出现哪几种结果并写下来。
4、结论: 纸杯抛向空中落到地面后可能出现三种情况:杯口朝上、杯 口朝下、躺在地面上。
活动三:摸球
1、出示盒子(里面两个黄球,一个白球) 任意摸一个球,摸哪种颜色球的可能性大。 分组实验加以证明。 小结:任意摸一个球,有2 种结果,摸到黄球的可能性大, 白球的可能性小。
2、再放入 个红球,会出现哪种结果?摸到哪种球的可能性大,哪种球的可能性小,能摸出黑球吗? 实验验证。 小结。
3、出示盒子(2 师:一次摸出两个球,可能出现哪些结果?小组讨论并填表。
4、扩展练习: 前几天老师在一个商场门口发现了这样一种情况:一个人 手里拿着一个布袋,布袋里红、绿两种玻璃球各5 个,只需 元钱,如果你在场你会不会去玩?为什么?学生模拟摸球游戏。
小结:在布袋中能够摸出5 个绿球可能性非常小,这只是生活中最简单的骗术,在生活中还有许多形形色 色的陷井,我们识破这些陷井的办法就是学好科学知识,用 知识武装我们的头脑。
三、总结
这节课你有哪些收获?
可能性教案人教版篇九
1、知识与技能目标:
感受可能性,掌握用分数来描述一个事件发生的可能性。
2、过程与方法目标:
经历游戏探索可能性的过程提高学生的归纳总结能力.。
3、情感态度与价值观目标:
激发学生学习的兴趣,丰富其学习数学的积极体验
教学重点:用分数来描述一个事件发生的可能性;
教学难点:分数来描述一个事件发生的可能性的方法。
1、创设情境,导入新课
提问学生玩过击鼓传花的游戏吗?这个游戏中就蕴含着我们今天学习的知识――可能性。
2、师生合作,探究新知
1)、出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则;
调查本班第一排男生和女生的实际人数(男生4人,女生2人);
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是1/6。
2)、画图转化,直观感受
通过画图来验证。
从图中可以发现,每一个人得花的可能性是1/6,6人中有2人是女生,就有2次被传到的可能,所以妇女同学表演节目的可能性是2/6,男同学是4/6。
3)扑克牌应用
学生回答,老师总结
回答ppt中的问题.
1.说说什么是可能性?
2.怎么样用分数表示可能性?
本节课作业是课后习题1.4.5
可能性教案人教版篇十
学生有的猜..有的猜...
提问:一定是吗?(不一定)
小结:也就是说,现在你们只能是猜测,可能会是...,也可能会是...,这就是我们生活中的“可能性”(板书:可能性)
戏
1.用“一定”来描述摸球的结果,体验事件发生的确定性。
谈话:那么袋子里究竟是什么呢?
引导:怎么他每次摸到的都是红球呢?(生猜测:里面都是红球)同意他的猜测吗?我们一起来验证一下吧!(请xxx把里袋拎出来)
小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,那我任意摸一个球,结果会是?(红)一定吗?(板书:一定)
2.谈话:你们也想来玩摸球游戏吗?好,请组长拿出袋子。不过,在摸球之前先讲清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中并做好记录,依次传给其他组员摸,明白了吗?就让我们比一比哪组合作得最好?开始吧!
(让学生分组摸球,教师巡视指导)
汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)
猜一猜,袋子里是什么颜色的球?(黄球和绿球)
组长倒球验证,(师作出摸球的动作)轮到我摸了,我从这个袋里任意摸一个,结果会是?(黄,绿)一定吗?(不一定)那要怎么说?(可能是黄,也可能是绿)(板书:可能)
提问:那能在这个袋子里摸到红球吗?为什么?(板书:不可能)
3.小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。
如果袋子里有黄球和绿球,任意摸一个,可能是黄球,也可能是绿球。但不可能是红球。
1.练一练。
(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?为什么?
(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?
小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊 !
2.装球游戏,小学数学教案《数学教案-可能性的教学设计》。
谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!
安排3次装球活动,依次出示要求:
(1)任意摸一个球,一定是绿球。该怎么放呢?(学生讨论,放球,师巡视)
说说你是怎么放的?放3个5个都可以吗?
师表扬,说的好,只要全部是绿球,那摸到的一定是绿球。
(2)任意摸一个球,不可能是绿球。该怎么放呢?(学生讨论,放球,师巡视)
谁愿意来说一说?这么多放法都对吗?只要怎样?(不放绿球)
交流:任意摸一个,不可能是绿球,应该怎样装?装球时是怎样想的?
小结:任意摸一个,不可能是红球。有很多种装法,可以装一种、两种、三种甚至更多种颜色的球,但是不能装绿色的球。
(3)任意摸一个球,可能是绿球。
(每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励)
3.转盘摇奖活动
1、猜测:(师出示红黄蓝三色转盘)观察转盘,有几种颜色?想一想,转盘停止转动后,指针会指在哪里?能肯定吗?那应该怎么说?(转盘停止转动后,指针可能会指着红色,可能会指着黄色,还可能会指着蓝色。)
4.联系生活。
谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!
1、今天,我们一起研究了“可能性”的问题,你学得开心吗?学到了哪些新知识?
2、回家后把学到的新知识讲给爸爸妈妈听,再调查一下,看看生活中还有哪些事情可能发生,哪些事情不可能发生或一定会发生,一星期后举行一个交流会,比比谁讲得多讲得好!
可能性教案人教版篇十一
1.在具体情境中,通过现实生活中的有关实例使学生感受简单的随机现象,初步体验有些事件的发生是确定的,有些是不确定的。
2.通过实际活动(如摸球),使学生能列出简单的随机现象中所有可能发生的结果。
3.通过试验、游戏等活动,使学生感受随机现象结果发生的可能性是有大小的;能对一些简单的随机现象发生的可能性大小作出定性描述,并能和同伴进行交流。
1.教学内容和作用。
对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类。一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面还是出现反面。在现实世界中,严格确定性的现象十分有限,不确定现象却是大量存在的,而概率论正是研究不确定现象的规律性的数学分支。
《标准( 20xx)》将“概率”作为义务教育阶段数学课程内容“统计与概率”中的一部分,并将《标准(实验稿)》中的核心概念“统计观念”修改为“数据分析观念”,具体阐释为:“了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴含着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。数据分析是统计的核心。”
为了体现课标的要求,本套教材从第二学段开始安排“概率”的学习,并且根据学生的年龄特点,第二学段称为“随机现象发生的可能性”,第三学段称为“事件的概率”。因此,本单元知识内容的学习对学生后续概率知识的学习有很重要的作用。
本单元内容结构如下:
在具体编排上,本单元的教学内容分为两个层次。
一是初步感受随机现象中数据的随机性(例1)。在概率学习中,帮助学生了解随机现象是非常重要的。教科书第44页呈现了学生熟悉的“联欢会上抽签表演节目”的场景来引入 例1的学习,通过小丽、小雪、小明三位同学抽签的活动,使学生在具体情境中体验事件发生的确定性和不确定性,感受在相同的条件下重复同样的试验,其试验结果不确定,以至于在试验之前无法预料哪一个结果会出现。
二是在不确定的基础上体会随机现象的统计规律性(例2、例3)。随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。由于小学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书第45页例2,通过讨论“摸出一个棋子,可能是什么颜色”,使学生在活动中进一步认识简单试验所有可能发生的结果,并通过“重复20次”的试验统计,初步感受随机现象的统计规律性,知道事件发生的可能性是有大小的。例3通过让学生根据摸球试验的统计结果来推测袋中何种颜色的球多,进一步深刻体会随机现象的统计规律性。
练习十一中的练习形式多样,层次分明,通过“说一说”“掷一掷”“连一连”“涂一涂”“猜一猜”“填一填”等活动,为学生提供了积极思考、动手实践和合作交流的空间,有利于学生更好地理解本单元所学知识。
需要说明的是,在义务教育阶段,所涉及的随机现象都基于简单随机事件,即所有可能发生的结果是有限的,每个结果发生的可能性是相同的。
2.教材编排特点。
本单元教材在编排上有以下特点。
(1)运用数据分析来体会随机性,强调对可能性大小的定性描述。
关于“可能性”这一内容,原来的实验教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的,知道事件发生的可能性是有大小的。第二次在五年级上册,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,学会用分数描述事件发生的概率。
但教学实践表明,第一学段学生理解不确定现象有难度,不容易理解事件发生的可能性。
另一方面,在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大干世界。因此,在可能性知识的教学中,应加强对学生概率素养的培养,增强学生对随机思想的理解,使学生充分感受和体验简单随机现象中数据的随机性,能对一些简单的随机现象发生的可能性大小作出定性描述,而不要把丰富多彩的可能性内容变成了机械的计算和练习。鉴于此,在这次课程标准修订中,学生在第一学段中将不再学习概率,将不确定现象的描述后移到第二学段,即使对于随机性的学习,《标准( 20xx)》中也提出运用数据分析来体会随机性,并且强调对可能性大小的理解,而不是对可能性本身的理解,使这部分内容更具可操作性,符合小学阶段学生学习的特点。
(2)提供丰富的现实学习素材,促进数学知识的理解。
《标准(20xx)》指出:“学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。”所谓“经历”,是指“在特定的数学活动中,获得一些初步的经验”。因此,要“经历”就必须有一个现实的`活动情境,让学生在熟悉的情境中,联系自己身边具体的事物,通过观察、操作、解决问题等丰富的活动,感受数学知识的含义,认识数学与生活的密切联系。
本单元教材注意体现这一理念,不仅利用丰富多彩的呈现形式,为学生提供现实的、有趣的学习素材,同时注意所设计的教学活动能使学生经历知识的形成过程。首先,教材选取学生熟悉的生活情境作为教学素材,以“联欢会上抽签表演节目”(例1)、大量的活动(做一做、例2)等来丰富学生对不确定现象的体验,使学生初步了解现实世界中存在着的不确定现象,并逐步知道事件发生的可能性有大有小。其次,教科书中设计了多种不同层次的、有趣的活动和游戏,如摸棋子试验、涂色活动、抽签游戏、抛硬币、掷骰子等,这些活动都特别注意联系学生的生活实际,不但便于教师组织教学,更使学生在大量观察、猜测、试验、思考与交流的数学活动中,逐步丰富对随机现象和可能性大小的体验,经历知识的形成过程。再次,教科书第49页编排了“生活中的数学”,一方面可以加深学生对所学数学知识的理解,另一方面也使学生感受到可能性知识与生活的联系,有利于培养学生的应用意识。
(3)注重方法的指导和知识的整理。
要体验随机现象中数据的随机性,就要求学生在进行相关试验活动或游戏活动时必须遵守一定的规则,例如摸球时不能看着球摸,也不能摸完一次后不摇匀球就接着摸,这样都不能很好地体现随机性。教科书在相关例题及习题中明确提出了“放回去摇匀再摸”“按要求涂一涂”“随意摸一张”等要求,对学生的试验和游戏活动进行方法的指导,使学生能更好地体验数据的随机性。
另外,本单元虽然内容较少,但仍然编排了“成长小档案’’这一内容。通过“本单元结束了,你有什么收获?”一问,帮助学生回顾和梳理对可能性的认识,并通过两位学生的表达“根据可能性的大小来涂色很有意思”“生活中经常会遇到可能性的问题”来感受数学与生活的紧密联系,激发学习的兴趣。
1.重视学生的经验和体验,创设贴近学生实际的问题情境。
对于不确定性现象和可能性,第二学段的学生在生活中已经有了一定的经验和体验。在教学中,不管是在学生熟悉的生活情境还是感兴趣的游戏活动中(如掷硬币、玩转盘、摸卡片等),教师都应注意创设各种问题情境,充分调动学生的主动性和积极性,鼓励学生亲自动手试验,在试验中体验事件发生的可能性,让学生在具体的操作活动中进行独立思考并主动与同伴交换自己的想法,引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性,经历知识的形成过程。
2.引导学生收集和积累不确定现象和可能性的例子。
修订后的教材中,本单元是学生第一次正式学习“概率”,因此,提供丰富的随机现象实例,无疑能有效地促进学生充分感受和体验不确定现象和事件发生的可能性。教学本单元时,教师应鼓励学生在课前、课中、课后收集和积累一些教材上和生活中遇到的不确定现象的例子,并引导学生进行展示交流。例如,现在很多超市或商店在节假日时都会设计一些摸奖和转盘游戏,教师可以把它们引入到课堂教学中,组织学生交流、思考,引导学生正确的认识生活中的一些现象。
3.组织开展简单的实践活动,培养学生的应用意识。
为了培养学生主动发现生活中的数学问题并能有意识利用所学数学知识进行解释和解决的能力,《标准( 20xx)》中增加了核心概念——应用意识。但课堂教学由于时间和空间的限制,对于培养学生应用意识的作用是有限的,所以在教学本单元时教师可以适当地设计一些简单的实践活动(如为班级或学校元旦联欢会设计一个摇奖转盘等),将课内外学习结合起来,使学生感受数学与生活的联系,从而培养学生的应用意识。
4.把握好教学要求。
本单元主要是让学生对随机现象“初步体验”和“感受”,因此,教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生能够结合具体的问题情境,用“一定(肯定)”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。
5.建议用3课时教学。
可能性教案人教版篇十二
义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。
1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。
2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。
3、情感目标:在活动交流中培养合作学习的意识和能力。
学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。
利用可能性的知识解决实际问题。
两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。
一、创设情境,激趣猜测
1、听故事,激发学习兴趣
(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?
(动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)
2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?
学生猜测:它有可能追到小兔,也有可能追不到小兔。
师:那追到的可能性会......很小。
3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。
(板书课题:可能性的大小)
实践是最好的老师,下面我们就通过摸球试验来研究,好吗?
二、探究、验证
1、试验准备。
(1)介绍试验材料。
师:每个小组准备了一个盒子,盒子里都有红球和蓝球。
(2)说明试验要求。
(多媒体出示小组合作要求。)
(二)摸到哪种颜色球的可能性小?
(3)提出注意事项。
师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。
2、合作试验、初步推测。
(1)各小组试验,教师巡视。
(2)观察、汇报。
师:谁把你们组的试验结果汇报一下?
生汇报。
3、推理、验证、归纳。
(1)观察。
(集中展示各小组的摸球情况统计图。)
师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?
生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。
(2)思考。
师:这都是你们的推测,到底对不对呢?有什么方法可以知道?
师:好!莫老师数三声,我们就一起把盒子打开。
(红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)
师:也就说,在摸球试验中,可能性的大小和什么有关系呢?
(与球的数量有关。)
师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。
(3)归纳。
三、应用、拓展
1、转转盘。(课本106页的“做一做”。)
(生可能会选黄色)你为什么会选黄色格呢?
(因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)
转转试试看?
不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)
师:为什么只有()个同学拿到图案?
3、拓展。
师:老师这里还有一个有趣的转盘(出示幸运转盘)。
(因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)
师:你们能用学到的数学知识解释生活中的问题,真是棒极了!
2、设计转盘。(练习二十第4题。)
师:看了这个转盘,你们想不想也来设计这样有趣的转盘?
(1)课件出示设计要求。
请同学们在书本109页上涂一涂。
(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)
问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?
(3)。
4、解决问题。
师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)
师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)
(小猫扑到黄色蝴蝶的可能性大。)
师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)
(天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)
师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)
师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?
(因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)
师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。
听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)
(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)
5、猜一猜。(练习二十第10题。)
师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。
汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。
师补充:虽然猜对的可能性小,但我们也是有可能猜对的。
四、、延伸
1、延伸。
2、。
(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?
出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。
师:看了这个故事结果后,你们有话要跟小猴子说吗?
小朋友们,我们可不要像小猴那样三心两意哦!
出处 kAoYaNmIjI.Com
五、板书设计
可能性大小
数量多可能性大
数量少可能性小
可能性教案人教版篇十三
小学数学人教课标版三年级上册第八单元(p104—111)
一、基础性目标:
1、使学生初步体验有些事件的发生是确定的,有些则是不确定的。
2、使学生能够列出简单试验所有可能发生的结果。
3、使学生知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,并和同伴交换想法。
二、发展性目标:
1、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
2、通过实际操作活动,培养学生的动手实践能力,交流合作能力,推理能力。
重点:体验事件发生的确定性和不确定性,能够列举出简单实验所有可能发生的结果,知道事件发生的可能性是有大小的。
难点:研究事件的不确定现象,从不确定现象中寻找规律。
在现实世界中,严格确定性的现象十分有限,不确定现象却是大量存在的,而概率正是研究不确定现象的规律性的分支。《新课标》将“概率”作为义务教育阶段数学课程的四个学习领域之一“统计与概率”中的一部分,从第一学段起就安排了有关的学习内容。
本单元主要是教学事件发生的不确定性和可能性,使学生初步体验现实世界中存在着不确定现象,并知道事件发生的可能性是有大小的。本单元教材在编排上有下面几个特点。
1、选取学生熟悉的生活情境及感兴趣的游戏活动作为教学素材,帮助学生理解数学知识。
根据学生的年龄特点和生活经验,教科书中选取了学生非常熟悉的“新年联欢会上抽签表演节目”的现实情境,引入本单元的学习内容,还通过大量生活实例丰富学生对不确定现象的体验,目的是使学生积极地参与到数学学习活动中,并感受到数学就在自己的身边,体会数学学习与现实的联系。
教科书中还设计了有趣的摸棋子试验等活动,激发学生的学习兴趣,使学生愉快的投入到数学学习活动中去。
2、设计丰富的活动,为学生提供探索与交流的时间和空间。
不确定现象是这部分内容的一个重要研究对象,从不确定现象中去寻找规律,这对学生来说是一种全新的观念。如果缺乏对随机现象的丰富体验,学生较难建立这一观念。
因此,教科书中设计了多种不同层次的、有趣的活动和游戏,如摸棋子试验、涂色活动、抽签游戏等。通过创设这些具有启发性的问题情境,使学生在大量观察、猜测、试验与交流的数学活动过程中,经历知识的形成过程,逐步丰富对不确定现象和可能性大小的体验。
1、注意创设问题的情境,引导学生在数学活动中体验不确定现象和可能性。
在教学中,教师应注意创设各种问题情境,充分调动学生的积极性和主动性,让学生在具体的操作活动中进行独立思考,鼓励学生发表自己的意见,并与同伴交换自己的想法。引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性。
2、把握好教学要求。
教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生结合具体情境的问题情境,用“一定”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。
3、本单元可用四课时进行教学。
可能性教案人教版篇十四
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的`方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。