最新因数与倍数(汇总15篇)
文件格式:DOCX
时间:2023-03-13 00:00:00    小编:电气自动化张老师

最新因数与倍数(汇总15篇)

小编:电气自动化张老师

每个人都有自己的梦想,而将梦想付诸行动,成为现实,需要我们总结之前的经验。还可以借鉴一些优秀的总结范文,学习其表达和思维方式,不断提升自己的写作水平。以下是一些优秀的总结范文,供大家参考。

因数与倍数篇一

设计者:李庆辉(沈阳市大东区辽沈街第三小学)一、教学内容分析本节课是《新世纪(版)义务教育课程标准实验教科书•数学》(新世纪小学数学教材)五年级上册第一单元《倍数与因数》的第5小节《找质数》。本节课的主要内容是使学生掌握质数与合数的意义,并能正确判断一个数是质数或合数;使学生掌握一定的学习方法,从中感受数学文化的魅力。

本节课是在学生掌握了2,3,5的倍数特征以及如何找一个数的因数的基础上进行教学的。通过本节课的学习,可以为后续学习公因数、约分、公倍数、通分等打下坚实的基础。所以,本节课起到了承前启后的作用。教材在编写上提供了具有丰富现实背景的题材,使学生体会到数学与生活的紧密联系;在分类中认识质数与合数并关注知识、方法的形成过程;通过开展有特色的实践活动,提高学生解决问题的综合能力。

本教学设计结合了本地区的学生特点,对教材进行了大胆的改革,以“栏目录制”为切入点,以“快乐40分”为主线,其目的是为学生创设良好的学习情境。在教学质数与合数的意义时,我采用了按因数个数的不同进行分组的方法,并以“起名字”的方式使学生对抽象的概念产生一种亲切感,以充分体现学生的主体地位,同时采取“分组竞争”的方式,提高学生的参与意识,并通过小组交流的方式分析问题、解决问题,使数学核心思想得到充分体现。二、学生分析通过调查发现,学生课前已经掌握了2,3,5的倍数的特征以及熟练找一个数的因数的方法,初步掌握了合作交流的学习方法。

学生都非常喜欢看与本节课相类似的电视节目,如“七星大擂台”“非常6+1”等,可以说学生具备了一定的这方面的生活经验,同时学生的主动参与意识都比较强,在趣中学、在乐中学是学生所追求的。

质数与合数的概念比较抽象,因此学生接受起来会很困难,再有找质数不像找奇数、偶数,不像找因数那样规律性较强,因此在教学时要注重找质数的方法的多样性及灵活性。

通过课前调查发现,学生对于数学的学习兴趣不是很浓,原因是数学不同于其他学科,比较抽象,他们总以为数学是不可捉摸的“天外来物”,学生学习数学的方式比较单一,同时学生虽然已初步掌握了合作交流的学习方法,但大部分都是浮于表面,没有做到切实有效。

基于以上几点,在教学设计上我根据学生已有的知识经验,抓住了学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连,这样大大地激发了学生的学习兴趣,使学生感受到数学并不陌生,它就在我们身边,就在我们的生活中。学生积极参与的同时,也使抽象的数学简单化了,同时也就减轻了接受上的难度。在找1~50中的质数这一环节,我给学生以充足的时间和空间,让学生独立思考,然后同桌、组内、组间充分交换意见,这样学习方式就变得多样化了,同时也使学生感受到了合作交流的重要性,从而自发地掌握了学习方法。

三、学习目标。

1.能够理解质数与合数的意义,能正确判断一个数是质数或合数。

2.掌握独立思考、合作交流的学习方法。

3.在研究过程中感受数学文化的魅力。

三、学习目标。

1.能够理解质数与合数的意义,能正确判断一个数是质数或合数。

2.掌握独立思考、合作交流的学习方法。

3.在研究过程中感受数学文化的魅力。

《3的倍数特征》教学案例研讨。

〖教学过程〗。

生1:个位上是3、6、9的数是3的倍数。

生2:不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。

生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。

师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。

师:请观察这个表格,你发现3的倍数什么特征呢,把你的发现与同桌交流一下。

学生同桌交流后,再组织全班交流。

生1:我发现10以内的数只有3、6、9能被3整除。

生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。

师:个位上的数字没有什么规律,那么十位上的数有规律吗?

生:也没有规律,1~9这些数字都出现了。

师:其他同学还有什么发现吗?

生:我发现3的倍数按一条一条斜线排列很有规律。

师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

师:这时一个重大发现,其他斜线呢?

生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

师:现在谁能归纳一下3的倍数有什么特征呢?

生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

学生先自己写数并验证,然后小组交流,得出了同样的结论。

〖案例点评〗。

本案例主要有以下几个特点。

1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。

2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。

〖讨论与思考〗。

1.在学生探究问题中“碰壁”或遇到困难时,教师如何发挥“导”的作用?

2.如何为学生提供有利于观察、探索的学习材料?

因数与倍数篇二

本课是在学生对乘法运算和对长方形的长、宽、面积的关系已有认识的基础之上进行教学的,教材设计让学生经历操作引入概念、探索寻求方法、观察概括规律等一系列数学活动,建立倍数和因数的概念,探索求一个数的倍数和因数的方法,概括一个数的倍数和因数的特征,为此,教材安排三个层次的学习活动。第一,用12块大小同样的正方形拼长方形,得出乘法算式,进而引出倍数和因数的概念,直观描述概念的意义。第二,在学生初步感知倍数和因数意义的基础之上,通过问题引领,引导学生自主探索,合作交流,寻求求一个数的倍数和因数的方法,概括一个数的倍数和因数的特征;第三,概念应用,培养学生运用新知解决实际问题的能力。三部分内容层层递进,浑然一体,“四基”“两能”的落实,为后继学习夯实基础。

(二)教学对象分析。

四年级的学生已经系统掌握了乘除法的意义和运算方法,认识了一个数的几倍等,经历过操作、观察、比较、概括等学习活动,积累了部分数学活动经验,这些是学习本课内容的基础。虽然此阶段的学生仍以直观思维为主,但抽象概括的能力也正逐步完善,加之小学生天生的模仿能力,使得探索学习本课知识成为可能。但小学生注意力分配能力不强,纷繁复杂的概念关系和倍数因数的多样求法易让其晕头转向,令人欣慰的是小学生思维活跃,对新事物总有一探究竟的欲望,新概念的学习必然会引起其极大的兴趣。

(三)教学环境分析。

本课,依托多媒体信息技术的支撑,整合了视频交互系统的摄像、批注、抓捕、音视频链接等多种功能,外显学生内隐的思维过程,展示学生个性化的思考,有利于强化教学重点,突破教学难点,更好地实现课堂的开放性和交互性。采用“活动单导学”模式,学生自主创新学习,学习轻松愉悦,积极主动。

基于这些思考,我确立了如下教学目标。

1、初步理解倍数和因数的意义,掌握写一个数的倍数和因数的方法。

2、通过观察、交流等数学活动,探索一个数的倍数、因数的特征。

3、进一步感受数学知识的内在联系,提高数学思维的水平,培养观察、分析和抽象概括的能力,体会数学内容的奇妙、有趣,产生对数学的好奇心。

教学重点:理解倍数和因数的意义。

教学难点:探索并掌握找一个数的倍数和因数的方法。

下面我结合教学流程图,说说多媒体视频交互系统如何与本课教学进行有效整合作简要分析。

整合点一:视频创设情境,趣味导入揭课题。

倍数和因数是表示关系的一类概念,有关系是建立概念的必要条件,为此,链接视频《大头儿子和小头爸爸》,以创设情境,“两个人之间的关系有父子关系,两个数之间的关系有倍数和因数的关系”,用生活概念类比数学概念,架起生活与数学的桥梁,激发了学生学习的兴趣,巧妙地揭示了课题。

整合点二:批注整理语序,形象支撑突重点。

活动一,拼图写算式,引入倍数和因数的概念。因为倍数和因数之间关系复杂,描述概念的语句冗长,学生常常被绕晕了头,甚至混淆概念。课中,采用白板的批注功能描出“语序”,图示注明概念表述的语言顺序,辅之以形象支撑,降低了学习难度,突出了教学重点。

整合点三:抓捕学习信息,以学定教破难点。

活动二和活动三,探索方法,概括特征。学生的思维具有独特性,写倍数和因数的方法也多样化,形成了教学的难点。为此,设计“学”在“教”前,让学生先行尝试,采用摄像择点抓捕(课件呈现捕获图片),调研学情,对比全面的和漏缺的、有序的和杂乱的……捕获差异资源,把“学”的信息变为“教”的资源,让“学”为“教”所用(课件呈现三个问题),引导学生在互动探究中互补,从而建构知识体系,总结出写倍数和因数的方法。随后再次采用电子白板的随机批注功能,聚焦倍数和因数中最大的和最小的,数一数数量,拖拉板书,总结出一个数的倍数和因数的特征。在视频捕获、聚焦对比、互动交流中突破了教学难点。

整合点四:链接互动游戏,巩固新知巧检测。

借助白板的视频链接和ppt的批注功能,设计“心随我动,快乐大转盘”游戏,巩固概念,检测新知:说说两个数的关系,任意转动一次,用上倍数因数说出所指数和指定数的关系;设计转盘上的数字,写出指定数的倍数和因数,巧妙地巩固了新知,最后完成检测作业。

本课,有了多媒体视频交互系统的支撑,在“技术”与“学科”的整合之下,用动画《大头儿子和小头爸爸》的片段创设趣味性情境,架设了数学与生活的桥梁,引发学生形成了积极的学习心向;调研学情,视频择点抓捕,捕获“学”的差异资源为“教”所用,实现了知识的自主生成;巧用批注以聚焦观察,在互动互补的快捷反馈中,强化了教学重点,突破了教学难点;课末,“心随我动,快乐大转盘”游戏更是把课堂学习推向高潮,引领学生享受着幸福的学习之旅。

以上是我说课的全部内容,敬请指导,谢谢!

因数与倍数篇三

(1)能直接在方格图上,数出相关图形的面积。

(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

2、过程与方法

(1)在解决问题的过程中,体会策略、方法的多样性。

(2)学会与人交流思维过程与结果。

3、情感态度与价值观

积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。

1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。

2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。

一、创设情境、揭示新课。

我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。

展示地毯上的图形,让学生仔细观察图形特点,说发现。

地毯是正方形,边长为14米蓝色部分图形是对称的,……

师:看这副地毯图,请你提出数学问题。

根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”

师板书课题:地毯上的图形面积

二、自主探索、学习新知

如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

1、学生独立解决问题

要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

2、小组内交流、讨论

3、班内反馈

请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。

学生的答案也许有:

(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)

(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)

(3)用总正方形面积减去白色部分的面积;(大减小法)

(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

4、学生总结求蓝色部分面积的方法。

三、巩固练习、拓展运用(课本第19页练一练)

1、第1题

(1)学生独立思考,求图1的面积。

(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

2、第2题

独立解决后班内反馈。

3、第3题

(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

(2)学生观察结果,说发现。

第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。

四、全课小结,课后拓展

今天我们进行了那些活动,你收获了什么?

师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。

因数与倍数篇四

尊敬的各位专家、老师:

大家好!我说课的内容是苏教版小学数学四年级下册第70—73页:《倍数和因数》。这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材安排了三道例题、两道“试一试”及相应的“想想做做”,例1通过用12个同样大的正方形拼成不同的长方形的操作,让学生写出不同的乘法算式,在此基础上教学倍数和因数的意义。例2教学找一个数的倍数,并结合“试一试”引导发现一个数倍数的特征。例3教学找一个数的因数,再结合“试一试”引导发现一个数因数的特征。通过本节课的学习,要达到以下教学目标:

1、通过操作活动得出相应的乘除算式,帮助学生理解倍数和因数的意义;探索求一个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

教学重点是理解倍数和因数的含义,掌握找一个数的倍数和因数的方法。

教学难点是掌握找一个数的倍数和因数的方法。

为了顺利完成教学目标,有效突出重点,突破难点,在尊重教材的基础上,我打算根据学生的认知特点和心理特征,通过激趣、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣,让学生通过独立思考、合作交流进行自主探索,教师及时引导学生掌握数学思考的方法。

基于以上认识我预设了如下几个教学环节:

首先和学生交流生活中的各种各样的关系,“比如你们和老师是什么关系?你和妈妈呢?其次引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。

我准备分三个层次进行教学。

(1)操作体验,初步感知倍数和因数的意义。通过操作我们能发现许多的知识。请同学们拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着那些不同的乘法算式。再让学生根据算式猜一猜“他可能是怎么摆的”,然后电脑演示相应的操作。用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。

(2)在具体的乘法算式中,理解倍数和因意义。值得注意的是,教材没有给出抽象的意义,而是结合乘法算式进行直观的描述,这样不仅降低了难度,而且为学生的后续学习拓展了空间。因此,教师首先根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,12是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。

(3)及时练习。我把“想想做做”第1题改为学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子都是乘法算式,教师就需及时有效“介入”比如,“24除以3=8”,促成学生不仅从乘法的角度去思考而且也可以从除法的角度进行,为后面找一个数的因数做好伏笔。

分两个层次进行,首先教学找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,学生之间积极互动,“捕捉”对方的想法,完善自己的认知理解掌握找一个数倍数的方法并结合“试一试”,通过交流比较,发现“一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数”。第二个层次教学找一个数的因数,相对于找一个数的倍数而言,找一个数的因数无疑难度增加了,在此环节中不必急于告诉学生方法,而是放手让学生独立思考,尝试探索“从学生的角度看问题是教学取得实效的关键”对学生出现的情况我作了充分的预设:有的可能是用乘法想(乘积是36的两个数是36的因数)有的可能是用除法想(除数和商都是36的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。由于一个数倍数特征的借鉴,一个数因数的特征放手让学生自己总结。

因数与倍数篇五

4、培养学生的观察能力。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12。

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)。

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。

齐读p12的注意。

(一)找因数:

1、出示例1:18的因数有哪几个?

学生尝试完成:汇报。

(18的因数有:1,2,3,6,9,18)。

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36。

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)。

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的'是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。

18的因数。

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……。

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12。

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……。

你是怎么找的?(用3分别乘以1,2,3,……倍)。

5的倍数有:5,10,15,20,……。

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。

2的倍数3的倍数5的倍数。

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

完成练习二1~4题。

因数与倍数篇六

教科书第25页,练习四第5~8题。

1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。

3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。

1、我们已经掌握了找两个数的公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。

(板书课题:公倍数和最小公倍数练习)。

2、填空。

5的倍数有:()。

7的'倍数有:()。

5和7的公倍数有:()。

5和7的最小公倍数是:()。

3、完成练习四第5题。

(1)理解题意,独立找出每组数的最小公倍数。

(2)汇报结果,集体评讲。

(3)观察第一组中两个数的最小公倍数,看看有什么发现?

每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?

(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)。

在有些情况下,两个数的最小公倍数是这两个数的乘积。

4、完成练习四第6题。

你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?

交流,汇报。

说说你是怎么想的?

1、完成练习四第7题。

(1)理解题意,独立完成填表。

(2)你是怎样找到这两路车第二次同时发车的时间的?

你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)。

2、完成练习四第8题。

(1)理解题意。

你能说说,他们下次相遇,是在几月几日吗?(8月24日)。

你是怎样知道的?

要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)

通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。

在小组中互相说说自己本节课的收获。

因数与倍数篇七

【知识点】:

1、认识自然数和整数,联系乘法认识倍数与因数。

像0,1,2,3,4,5,6,…这样的数是自然数。

像-3,-2,-1,0,1,2,3,…这样的数是整数。

2、我们只在自然数(零除外)范围内研究倍数和因数。

3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。

补充【知识点】:

一个数的倍数的个数是无限的。

探索活动(一)2,5的倍数的特征。

【知识点】:

1、2的倍数的特征。

个位上是0,2,4,6,8的数是2的倍数。

2、5的倍数的特征。

个位上是0或5的数是5的倍数。

3、偶数和奇数的定义。

是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

4、能判断一个数是不是2或5的倍数。能判断一个非零自然数是奇数或偶数。

补充【知识点】:

既是2的倍数,又是5的倍数的特征。个位上是0的数既是2的倍数,又是5的倍数。

探索活动(二)3的倍数的特征。

【知识点】:

1、3的倍数的特征。

一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。

2、能判断一个数是不是3的倍数。

补充【知识点】:

1、同时是2和3的倍数的特征。

个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。

2、同时是3和5的倍数的特征。

个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。

3、同时是2,3和5的倍数的特征。

个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。

找因数。

【知识点】:

在1~100的自然数中,找出某个自然数的所有因数。方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。

补充【知识点】:

一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。

找质数。

【知识点】:

一个数只有1和它本身两个因数,这个数叫作质数。

一个数除了1和它本身以外还有别的因数,这个数叫作合数。

3、判断一个数是质数还是合数的方法:

一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。

数的奇偶性。

【知识点】:

1、运用“列表”“画示意图”等方法发现规律:

小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。

2、能够运用上面发现的数的奇偶性解决生活中的一些简单问题。

3、通过计算发现奇数、偶数相加奇偶性变化的规律:

偶数+偶数=偶数奇数+奇数=偶数。

因数与倍数篇八

(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。

(2)教学目标:

知识、技能目标:

让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

情感、价值目标:

让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

(3)教学重点:

(4)教学难点:

掌握找一个数的倍数和因数的方法。

二、谈设计理念。

首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。

其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的.理解,而不能全面的正确的表达。

三、谈教学过程:

(1)合作交流、揭示主题。

用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。

(2)教学概念、正反促成。

利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。

(3)设疑,置疑,激发学生的反思力度。

在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”

“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,

“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”

(5)讨论互评,自主学习。

放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,

学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”

1×36=36。

36÷1=36。

2×18=36。

36÷2=18。

3×12=36。

36÷3=12。

4×9=363。

6÷4=9。

6×6=36。

36÷6=6。

(6)自主不失指导,掌握不失总结。

如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)。

小结:不能被这个数整除的数就不是这个数的因数。

小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。

提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?

总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。

四、教学板书。

因数与倍数篇九

(非零自然数中)。

1×36=3636÷1=3636÷36=1。

2×18=3636÷2=1836÷18=2。

3×12=3636÷3=1236÷12=3。

4×9=3636÷4=936÷9=4。

6×6=3636÷6=6。

36的因数有:1、2、3、4、6、9、12、18、36.

因数与倍数篇十

苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。

1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。

2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。

3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。

整理、应用因数和倍数的知识。

应用概念正确判断、推理。

一、揭示课题

谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?

揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。

二、回顾与整理

1.回顾讨论。

出示讨论题:

(1)你是怎样理解因数和倍数的?举例说明你的认识。

(2)2、5、3的倍数有什么特征?我们是怎样发现的?

(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。

(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?

让学生在小组里讨论,结合讨论适当记录自己的认识或例子。

2.交流整理。

围绕讨论题,引导学生展开交流,结合交流板书主要内容。

(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)

(指名学生说一说,再集体说一说)

你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)

能说说找一个数的因数或倍数的方法吗?

说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。

(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?

自然数可以怎样分类,各可以分成哪几类?

你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)

说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。

什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)

(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?

说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。

结合交流内容,逐步板书成:

l

质数质因数

合数分解质因数

因数公因数最大公因数

(互相依存)

倍数公倍数最小公倍数

2、5、3的倍数的特征

偶数

奇数

(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。

学生互相交流,教师巡视、倾听。

交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。

三、练习与应用

1.做“练习与应用”第1题。

指名学生交流,说说每组里因数和倍数关系。

提问:3和7有没有因数和倍数关系?为什么没有?

2.做“练习与应用”第2题。

(1)让学生独立写出前四个数的所有因数,指名两人板演。

交流:你是怎样找它们的因数的?(检查板演题)

(2)口答后三个数的因数。

引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)

提问:一个数的因数有什么特点?

说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。

3.分别说出下面各数的倍数。

581217

分别指名学生说出各数的倍数,教师板书。

提问:为什么要写省略号?一个数的倍数有什么特点?

说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。

4.做“练习与应用”第3题。

(1)让学生独立完成填数。

交流:题里各是怎样填的?(呈现结果)填数时怎样想的?

提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?

同时是2和5的倍数的数有什么特征?

哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。

(2)这里哪些数是偶数?奇数呢?

你是怎样判断偶数和奇数的?

5.做“练习与应用”第4题。

要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。

交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?

(板书:180810)

组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)

6.做“练习与应用”第5题。

让学生把质数圈出来,在合数下面画线。

交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?

说明:质数只有2个因数,合数至少有3个因数。

7.做“练习与应用’’第6题。

让学生选出质数和偶数。

交流、呈现结果。

提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。

所有的合数都是偶数吗?你能举例子说明吗?

指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。

8.下面的说法正确吗?

(1)大于0的自然数不是奇数就是偶数。

(2)大于0的自然数不是质数就是合数。

(3)奇数都是质数,偶数都是合数。

(4)自然数中最小的偶数是2,最小的合数是4。

(5)一个数本身既是它的因数,又是它的倍数。

9.做“练习与应用”第7题。

(1)让学生填空,指名板演。交流并确认结果。

提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?

说明:这里把合数写成这种质数相乘的形式,叫什么?

(2)把30、42分别分解质因数。

学生完成,交流板书,检查订正。

四、全课总结

提问:这节课主要复习的哪些内容?你有哪些收获?

因数与倍数篇十一

[教学内容]。

数的世界。

[教学目标]。

1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。  。

2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数.

3.培养学生综合应用的能力。

教具准备。

多媒体课件、图片。

[教学重、难点]。

探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。

[教学过程]。

创设“水果店”的情境,呈现了生活中的数有自然数、负数、小数。在比较中认识自然数、整数,使对数的认识进一步系统化。

先让学生观察情境图,说说图中有哪些数,并给它们分类。

学生汇报观察结果,通过比较认识自然数、整数,使学生对数的认识进一步系统化。

1、在解决书上提出的问题的过程中引出算式。

5×4=20(元)。

以这个乘法算式为例说明倍数和因数的含义,即20是4的倍数,20也是5的倍数,4是20的因数,5也是20的因数。引导学生认识倍数与因数,体会倍数与因数的含义。

在利用乘法算式说明倍数和因数的含义的基础上,出示一个除法算式,如:18÷6=3启发学生思考:根据整数除法算式能不能确定两个数之间的倍数关系。

说明:在研究倍数和因数,范围限制为不是零的自然数。

2、你写我说。

让学生同桌间互相写算式,再说一说。算式可以是乘法算式,也可以是除法算式。

三、找一找。

1、判断题目中给的数是不是7的倍数。

先让学生用自己的方法判断,再组织学生交流,使学生逐步体会可以通过想乘法算式或除法算式的方法来判断。

2、找7的倍数:

四、练一练:

第2题:先让学生自己找一找4的倍数和6的倍数,并用不同的符号做好记号。然后组织学生交流,并让学生说说找倍数的方法。最后,说说哪几个数既是   4的倍数有是6的倍数。

第3题:先让学生独立写一写,再组织学生交流各自的方法,并在交流比较的过程中体会怎样做到不重复、不遗漏。体会到像这样找一个数的倍数,一般用乘法想比较方便。

[板书设计]。

像0、1、2、3、4、5、…这样的数是自然数。

像-3、-2、-1、0、1、2、…这样的数是整数。

5×4=20(元)      20是4和5的倍数。

第2课时。

[教学内容]。

2、5的倍数特征。

[教学目标]。

1、经历探索2、5倍数的特征的过程,理解2、5倍数的特征,能判断一个数是不是2或5的倍数。

2、知道奇数、偶数的含义,能判断一个数是奇数或是偶数。

3、在观察、猜测和讨论过程中,提高探究问题的能力。

[教学重、难点]。

探索2,5的倍数的特征。

[教学准备]。

多媒体课件1到100的数字表格。

[教学过程]。

一、5的倍数的特征的探究。

让学生在100以内的数表中找出5的倍数,用自己的方式做记号,并观察、思考5的倍数有什么特征。在此基础上组织学生交流。

引导学生归纳。

5的倍数的特征:个位上是0或5的数是5的倍数。

试一试:

尝试用5的倍数特征来判断一个数是不是5的倍数。

二、2的倍数的特征的探究。

让学生在100以内的数表中找出2的倍数,用自己的方式做记号,并观察、思考2的倍数有什么特征。在此基础上组织学生交流。

引导学生归纳2的倍数的特征:

个位上是0、2、4、6、8的数是2的倍数。

在学生理解2的倍数的特征后再揭示偶数、奇数的含义,并进行你问我答的。

判断练习。

偶数:是2的倍数的数叫做偶数。

奇数:不是2的倍数的数叫做奇数。

四、练一练:

第2题:引导学生先独立思考,然后组织学生交流自己的思考方法。在引导学生判断时,应根据2、5的倍数特征说明理由。如“因为85不是2的倍数,所以不能正好装完”;又如:“因为85是5的倍数,所以能正好装完。”

五、数学游戏:

这是围绕“2、5的倍数的特征”设计的数学游戏,通过游戏加深学生对2、5的倍数的特征的理解。

[板书设计]。

2、5的倍数的特征。

5的倍数的特征:个位上是0或5的数是5的倍数。

2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。

是2的倍数的数叫偶数。

不是2的倍数的数叫奇数。

第3课时。

[教学内容]。

[教学目标]。

1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。

2、发展分析、比较、猜测、验证的能力。

3、渗透集合思想和不完全归纳法。

[教学重、难点]发展分析、比较、猜测、验证的能力。

[教具准备]。

多媒体课件和1到100的数字表格。

[教学过程]。

一、3的倍数的特征的猜想。

我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。

二、3的倍数的特征的探究。

3的倍数的特征每个数位的各个数字加起来是3的倍数。

试一试:

尝试用3的倍数特征来判断一个数是不是3的倍数。

三、练一练:

第2题:

让学生准备几张卡片:3、0、4、5边摆边想,再交流讨论思考的过程。

(1)30、45、54(2)30、54 (3)30、45 (4)30。

四、实践活动:

[板书设计]。

3的倍数的特征:这个数各位数字之和是3的倍数。

第4课时。

[教学目标]。

1、用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。

2、在1-100的自然数中,能找到某个自然数的所有因数。

3、培养学生的分析能力和不完全归纳的数学思想。

[教学重、难点]。

用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。

[教学准备]。

多媒体课件和边长是1厘米的小正方形纸片。

[教学过程]。

1。动手拼长方形。

用12个小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,再交流不同的拼法。

学生一般会用乘法思路思考:哪两个数相乘等于12?然后找出:

1×12、2×6、3×4。这种思路就是找一个数的因数的基本方法,要引导学生关注有序思考,并体会一个数的因数个数是有限的。

2。试一试。

找因数的基本练习:找9和15的因数。让学生独立完成,注意引导学生有序思考。

3.练一练。

第2题:先让学生自己找一找18的因数和21的因数,并用不同的符号做好记号,然后让学生说说找因数的方法。最后,说说哪几个数既是18的因数,又是21的因数。

第3题;

利用数形结合,进一步体会找因数的方法。

第5题:可以引导学生用找因数的方法进行思考,鼓励学生将想到的排列方法列出来,在交流的基础上,使学生经历有条理的思考过程。48=1×48=2×24=3×16=4×12=6×8,48有10个因数,就有10种排法。如每行12人,排4行;每行4人,排12行等。37只有两个因数,只有两种排法。

【板书设计】。

找因数。

面积是12的长方形有:6种图形        1×12=12。

2×6=12。

3×4=12。

第5课时。

[教学内容]找质数。

[教学目标]。

1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。

2、能正确判断质数和合数。

3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。

[教学重、难点]。

1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。

[教学准备]。

多媒体课件和边长是1厘米的小正方形纸片。

[教学过程]。

一、动手拼长方形,揭示质数、合数的意义。

1、用小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,边拼边填写书上的表格。

2、引导学生观察并提出问题:“这些小正方形有的只能拼成一种长方形,有的能拼成两种或两种以上的长方形,为什么?”

3、揭示质数、合数的意义。

组织学生观察、比较、分析逐步发现特征,并把几个自然数分类,揭示质数和合数的意义。

从概念出发理解“1既不是质数,也不是合数。”

二、讨论判断质数、合数的方法。

1、尝试判断:2、8、9、13、51、37、91、52是质数还是合数。

先让学生独立判断,再组织交流“怎样判断一个数是质数还是合数”

2、归纳方法:

只要找到一个1和本身以外的因数,这个数就是合数。如果除了1和它本身找不到其他的因数,这个数就是质数。

三、探索活动:

第1题:

用“筛法”找100以内的质数。引导学生有步骤、有目的地操作、观察和交流,找出100以内的质数。

介绍这种方法是两千多年前希腊数学家提出的研究质数的方法,称为“筛法”。现在随着计算机的发展,这种操作方法可以编成程序让计算机进行操作。这样,可以使学生了解数学发展的历史,感受到数学文化的魅力,丰富学生对数学发展的认识,激起学生探究知识的欲望和兴趣。

第2题:

本题引导学生通过操作、观察,探索规律。

第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?

[板书设计]。

找质数。

一个数除了1和它本身以外还有别的因数,这个数就叫合数。                             一个数只有1和它本身两个因数,这个数叫做质数。

1既不是质数,也不是合数。

第6课时。

[教学内容]数的奇偶性。

[教学目标]。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学重、难点]。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学过程]。

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律。

[

[板书设计]。

数的奇偶性。

例子:                   结论:

因数与倍数篇十二

1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2、培养学生观察、比较、抽象、慨括的能力。

3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

质数、台数、济数、偶数的区别

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小_的分类方法。明确:分类的际准很重要。

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作。找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

15 28 31 53 77 89 1ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22 29 35 49 51 79 83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

(略)。

因数与倍数篇十三

在教完本单元,并测试联系后,我发现"倍数和因数"这一内容与原来教材比有了很大的不同,也出现了很多教学的困惑.老教材中是先建立整除的概念,在此基础上认识因数倍数。

本单元主要采用的小组或同桌进行交流,合作学习。在教学过程中教师的引导起着很关键的作用,因为对学生来说,这是一个完全陌生的知识,而且是比较抽象的概念性知识,有些知识就必须由教师来教学,很直白的告诉学生,这是不可避免的。而能让学生去探索发现的,教师的引导很重要,在让学生去交流时一定要明确要求,在学习过程中,找一个数的所有因数很困难,因为很多学生都会无序的去找,这样就造成遗漏。

一、“自然数的定义”让我困惑。

老教材里只说像1,2,3,4,5,6......这样的数叫自然数,而新教材则把0也放进去了,接下去又说研究(零除外的)自然数的倍数和因数。让我有点搞不清楚.又如书上什么地方都没出现素数的说法了,试卷联系上却有了,要不是新老教材都教过,对什么是素数可要去大查一番了.

二、为什么本册书上在讲“倍数与因数”的时候不提整除。

我的头脑也许还受以前书的影响,我认为说到“倍数与因数”必须要谈到整除,似乎只有谈到了整除,才有资格说到“倍数与因数”,但是我在实际上课的过程中,也没体会到书上在这里不提整除到底好处在哪儿,而作业中却出现了,到底是教呢,还是不教。真感到困惑。

五年级上册第一单元"倍数与因数"教学反思来自本站。

因数与倍数篇十四

:p70~72的例题及相应的试一试、想想做做中的1—3题。

1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。

2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

:理解因数和倍数的含义,知道它们的关系是相互依存的。

探索并掌握找一个数的因数的方法。

:12个小正方形片、每个学生的学号纸。

1、操作活动。

(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。

(2)整理、交流,分别板书4×3=1212×1=126×2=12。

2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。

(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?

指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?

小结:倍数和因数是指两个数之间的关系,他们是相互依存的。

指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。

二、探索找一个数倍数的方法。

1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。

3、议一议:你发现找3的倍数有什么小窍门?

明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。

4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?

生独立完成,集体交流。注意用……表示结果。

5、观察上面的3个例子,你发现一个数的倍数有什么特点?

根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。

6、做“想想做做”第2题。

1、学会了找一个数倍数的方法,再来研究求一个数的因数。

你能找出36的所有因数吗?

2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。

3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?

4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)。

板书:(有序、全面)。正因为思考的有序,才会有答案的全面。

5、试一试:请你用有序的思考找一找15和16的因数。

指名写在黑板上。

一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。

7、“想想做做”第3题。

生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。

四、课堂总结:学到这儿,你有哪些收获?

五、游戏:“看谁反应快”。

规则:学号符合下面要求的请站起来,并举起学号纸。

(1、)学号是5的倍数的。

(2、)谁的学号是24的因数。

(4、)谁的学号是1的倍数。

2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。

在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。

3、p71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的`顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。

5、教材p72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。

为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。

因数与倍数篇十五

1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

是理解因数和倍数的概念,能有序地求出一个数的因数和倍数。

(一)激发兴趣,引入新课:让学生针对12个正方形的摆法讨论,激发学生兴趣,引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。

(二)情境体验,理解概念:分三个层次进行教学。

(1)情境体验,初步感知倍数和因数的意义。让学生根据12个正方形的不同摆放方式写出算式,让学生充分经历了“由形到数、再由数到形”的`过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。

(2)在具体的乘法算式中,理解倍数和因意义。这样做不仅降低了难度,而且为学生的后续学习拓展了空间。根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,36是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。

明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。

(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)。

接下来结合板书算式,考考大家谁是谁的倍数,谁是谁的因数?

若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”

学生自由发言,统一认识。

小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。

第三个环节是探索方法,发现特征:分两个层次进行,首先找一个数的因数,为了考查学生的动手有的可能是用乘法想(乘积是20的两个数是20的因数)有的可能是用除法想(除数和商都是20的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。并通过找三个数的所有因数,而找出引述的特征,从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。

接下来找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,并在找因数特征的基础找到倍数的特征。

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
最新因数与倍数(汇总15篇) 文件夹
复制