初一一元二次方程知识点总结 初中数学一次函数知识点总结(6篇)
文件格式:DOCX
时间:2023-03-13 00:00:00    小编:三颗葱潘潘

初一一元二次方程知识点总结 初中数学一次函数知识点总结(6篇)

小编:三颗葱潘潘

总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。相信许多人会觉得总结很难写?那么下面我就给大家讲一讲总结怎么写才比较好,我们一起来看一看吧。

初一数学二元一次方程知识点总结篇一

二元一次方程组的知识点是比较难记的要领,下面的小编为大家分享的是初一数学知识点总结之二元一次方程组,想要巩固的同学可以过来看看。

方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

将未知数的个数由多化少、逐一解决的'想法,叫做消元思想。

以上就是的小编为大家带来的初一数学知识点总结之二元一次方程组,希望同学们能够灵活的运用,接下来还有更详细的初中数学知识点尽在哦,希望同学们关注了。

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解与整式乘法的关系:m(a+b+c)

公因式一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

①确定公因式。②确定商式③公因式与商式写成积的形式。

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初一数学二元一次方程知识点总结篇二

(1)了解角的相关概念及垂直的概念.

(3)了解平行线的性质和判定,并应用其解题.

(4)会解二元一次方程组,能根据具体问题中的数另关系列出二元一次方程组并求解。

(5)了解确定事件与不确定事件的概念,并会判定哪些是确定事件或不确定事件。

(6)了解正整数幂的运算性质并会运用它们运算.

(7)了解单项式与多项式,多项式与多项式相乘的法则

(8)了解三角形的内角、外角及其外角等相关概念.

(9)了解圆的相关概念并会画圆.

2、基本技能、能力的培养要求:

(1)、学会利用转化的思想方法解决问题。

(2)、培养学生从具体到抽象,从特殊到一般的抽象概括能力。

(3)、培养学生分类的数学思想,学会类比的数学观念。

(4)、体验数形结合思想方法。

(5)、培养学生的自学能力,提高课堂效率。

(6)、培养推理论证能力。

初一数学二元一次方程知识点总结篇三

2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。

4.初步体会解二元一次方程组的基本思想――“消元”。

5.通过研究解决问题的方法,培养学生合作交流意识与探究精神。

6.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的.联系和作用。

7.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

理解二元一次方程组的解的意义。

探索如何用代入法将“二元”转化为“一元”的消元过程。

1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

归纳:基本思路:“消元”——把“二元”变为“一元”。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

8.教科书中没有的几种解法

(1)加减-代入混合使用的方法:

特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

(2)换元法

特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。

初一数学二元一次方程知识点总结篇四

通过半年的学习,学生的能力发展水平、知识的理解和掌握程度都有一定的提高,但也存在着不同程度的差距,普遍存在着优秀生、中程生、必培生三部分学生。

2、学生的能力发展水平

学生的能力发展水平包括多方面,如计算能力、观察能力、逻辑思维能力、综合分析能力等,学生年龄小,知识浅薄,分析能力较差,在教学过程中,要注意加以引导。

3、学生的学习态度和方法

本级学生有一部分学习上认真刻苦,逻辑思维能力强,能主动学习,不懂就问,这部分学生一般比较优秀;但一部分学生基础差,干劲不足,课前不预习,上课开小差,课后不复习,抄袭作业,没有上进心,针对他们,需要加强这方面的训练,改进新的教学方法。

三、教材分析

初一数学二元一次方程知识点总结篇五

知识与技能目标:

通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。

培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。

过程与方法目标:

经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。

情感态度与价值观目标:

经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。

难点:

教学流程:

课前回顾

情境引入

探究1:今有鸡兔同笼,

上有三十五头,

下有九十四足,

问鸡兔各几何?

(1)画图法

用表示头,先画35个头

将所有头都看作鸡的,用表示腿,画出了70只腿

还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿

四条腿的是兔子(12只),两条腿的是鸡(23只)

(2)一元一次方程法:

鸡头+兔头=35

鸡脚+兔脚=94

设鸡有x只,则兔有(35-x)只,据题意得:

2x+4(35-x)=94

比算术法容易理解

想一想:那我们能不能用更简单的方法来解决这些问题呢?

回顾上节课学习过的二元一次方程,能不能解决这一问题?

(3)二元一次方程法

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

(1)上有三十五头的意思是鸡、兔共有头35个,

下有九十四足的意思是鸡、兔共有脚94只.

(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;

鸡足有2x只;兔足有4y只.

解:设笼中有鸡x只,有兔y只,由题意可得:

鸡兔合计头xy35足2x4y94

解此方程组得:

练习1:

合作探究

找出等量关系:

解:设绳长x尺,井深y尺,则由题意得

x=48

将x=48y=11。

所以绳长4811尺。

想一想:找出一种更简单的创新解法吗?

引导学生逐步得出更简单的方法:

找出等量关系:

(井深+5)×3=绳长

(井深+1

解:设绳长x尺,井深y尺,则由题意得

3(y+5)=x

4(y+1)=x

x=48

y=11

所以绳长48尺,井深11尺。

归纳:

审:审清题目中的等量关系.

设:设未知数.

列:根据等量关系,列出方程组.

解:解方程组,求出未知数.

答:检验所求出未知数是否符合题意,写出答案。

初一数学二元一次方程知识点总结篇六

③ 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

鸡兔同笼

增减收支

里程碑上的数

先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

③ 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
初一一元二次方程知识点总结 初中数学一次函数知识点总结(6篇) 文件夹
复制