最新高三的数学知识点(模板16篇)
文件格式:DOCX
时间:2023-03-14 00:00:00    小编:-咖啡少年不加糖-

最新高三的数学知识点(模板16篇)

小编:-咖啡少年不加糖-

成功需要勤奋和毅力,付出总有回报。如何写出有趣、生动的文章?让我们一起来探讨吧。接下来将分享一些总结的写作技巧和要点,以帮助大家更好地进行总结写作。

高三的数学知识点篇一

1、突出对基础知识、基本技能、基本数学思想方法的考查。

加强对中学数学知识中所蕴涵的数学思想方法的考查,具体要求主要体现在通性通法的运用上。

2、强调能力立意,重视对数学能力的考查。

试卷结构

(一)考试形式,全卷满分为150分,考试时间为120分钟。

(二)内容比例,数学学科高考内容包括代数、立体几何和平面解析几何,它们在试卷中所占的比例与其在教学中所占的比例大致相同。

(三)题型,全卷包括选择题、填空题和简答题三种题型,其中,选择题部分约50分;填空题部分约30分;简答题部分约70分。

(四)试题难易比例,试题由容易题、中等题和难题组成。容易题、中等题、难题在试题中所占的比例大致为3:5:2。

名师分析

南京五中数学特级教师曹安陵老师认为,从20xx年《考试说明》看,数学学科的考查范围和题型等没什么变化。只是个别知识点有小的变化,没有涉及原则性的。题型依然为选择题、填空题和简答题三种,其中选择题10题,填空题6题,简答题5题。试卷的难易比例为容易题、中等题、难题所占比例大致为3:5:2。猜测总体难度20xx年可能会比去年容易点,不过卷子还没出,这只是大家希望的方向。

复习提示

考试重点是c级

目前一轮复习刚接近尾声,建议考生还是踏实抓好课本,抓好基础。因为从往年阅卷经验看,有些题目虽然不难,但得分不高,这说明很多考生虽然题目做得多,但没注意基础。比如去年高考的应用题大家都觉得不难,实际上分数很低。原因就在于复习指导思想有问题,太强调应试,反而起不到好效果。考生在抓好基础的前提下适当做些题,另外要注意总结,善于总结,提高成功率。另外要特别提醒考生注意的是,去年15个要求c级掌握的知识点都是考试重点,20xx年要求c级掌握的知识点有14个,考生一定要重点关注。

高三的数学知识点篇二

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20__年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

1.立足学科基础,强调能力立意。

命题以中学数学基础知识为载体,坚持能力立意,全面考查了空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。如理15、文16以集合语言、常用逻辑用语为载体,强调正确推理的形式和规则,突出考查抽象概括能力和推理论证能力;理17涉及的图形翻折及文19的“割补”或“等积变换”需要考生分析图形中基本元素及其相互关系,突出考查空间想象能力;理19的解答,考生可从特殊入手,通过合情推理得出结论并加以验证,也可通过演绎推理直接证明,突出考查推理论证能力;文12以椭圆的定义为载体,探究在新情境下“椭圆”生成的基本步骤和图形特征,重现“轨迹”的基本研究方法,突出考查抽象概括能力;理10以计数原理为载体,需要考生从题干及备选项中领悟将“选球方式”抽象为“颜色模式”,考查抽象概括能力与学习潜能。

2.关注数学本质,突出教育价值。

命题立足数学本质,从数学各分支的核心内容、学科思想以及相关分支的教育价值入手设置试题,合理地检测学生的基本数学素养。如统计与概率突出考查对统计量的理解与应用以及运用样本估计总体的思想,要求考生不仅会计算统计量而且会合理地根据统计量对问题作出分析与解释;函数与导数的考查突出导数的工具作用,考查考生在解题过程中对“常量”与“变量”辩证关系的理解以及综合运用导数研究函数性质的能力;解析几何突出“解析法”,要求考生将几何问题代数化,并合理地运用代数手段解决几何问题,体现解析几何的基本思想;立体几何突出对空间想象能力与推理论证能力的考查;三角突出三角变换及三角函数的图象与性质的研究;数列关注等差数列、等比数列的基本性质与运算,突出“基本量法”。

3.坚持课标理念,凸显导向功能。

命题紧扣课标理念,充分发挥对中学数学教学的正确导向作用。其一,引导中学数学教学全面落实课程标准,不随意忽视所谓的“冷门知识”,如理19、理14等。其二,引导中学数学教学回归教材,克服脱离教材的“题海战术”,如理8、文18等取材于教材习题的合理改造。其三,引导中学数学教学关注通性通法,淡化特殊技巧,每道试题的解题思路都是在数学思想方法的统领下自然形成的,试题的设计追求“新而不难,难而不怪”。其四,引导中学数学教学既关注“结果性知识”,也关注“过程性知识”,使学生既知其然,又知其所以然,如理10、理18等。其五,引导中学数学教学基于已有知识与方法的创造性运用而关注创新意识的培养,如理10以多项式展开式为背景,考查考生创造性地解决新情境下的数学问题;文12依托新情境材料,考查考生阅读理解、提取相关信息解决问题的能力。

高三的数学知识点篇三

数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。下面是小编帮大家整理的高三数学数列知识点,欢迎阅读,希望大家能够喜欢。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面:

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的.认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

高三的数学知识点篇四

1.1结构稳定.

题量延续10+7+5的模式,题型相对稳定,考试范围与浙江省的《考试说明》要求一致,不超出《浙江省教学指导意见》.

1.2命题理念稳定.

分步设问、分层把关.试题难度依选择题、填空题、解答题的顺序依次递增,各类题中都是起步容易逐层推进.五道解答题仍设10小问,通过分步设问,入口宽、上手易、深入难,使不同程度的考生得到相应的分数,既体现对考生的人文关怀,又会有很好的区分度.

重点突出.支撑中学数学知识体系的重点知识重点考查,如理科试题函数部分占到约22分,三角函数19分,立体几何25分,解析几何24分,数列重新回到解答题,占14分.涉及函数、椭圆、抛物线等核心知识点从不同角度重点考查。

淡化技巧,注重通性通法.

考一点想,少考一点算.

考思维的特点更加突出,体现出考数学,核心就是考查思维能力.如理科第(10),思维层次不同,解题所需时间、正确率就有差别.

凸显数学思想方法的考查.

突出能力立意.

试题突出考查阅读理解能力、计算能力、空间想象能力、思维能力等,很多试题都有多种解题途径,解题的切入点不同,运用的思想方法不同,体现出不同的思维水平,从而付出的时间与得到的分数产生差异,如理科第(10)题,第(17)题,第(21)题,第(22)题等都提出了很高的能力要求.

注重数学本质的理解

如理科第6题,考查恒等变换,第8题考查数形结合、方程思想,理科第9题考查两个基本原理。

注重思维灵活性

如第8题把线段比距离转化为坐标问题,第9题正难则反,第10题特殊验证关系比较,第16题整体凑配,第17题猜想与验证结合等,试题淡中见隽,突出数学是思维的学科的特色。

不断寻求知识的.新组合。

如理科3题由三视图到直观图,第5题加入整点问题,第12题把不等式、函数变化快慢、程序框图联系在一起,第8题综合椭圆、双曲线、圆、直线(渐近线),第10题综合集合、函数、方程、不等式等。

进一步加大文理差异.

加大创新意识和继续学习的潜能的考查.

文、理都继续保持一贯的对创新意识、学习潜能的考查,对符号语言、文字语言的阅读理解能力进行考查,重在甄别继续学习的潜能,虽然没有直接出现考查类比、归纳的问题,但多道试题要利用归纳、猜想与严密的论证相结合,要求更高。

高三的数学知识点篇五

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

高三的数学知识点篇六

其实 第一轮的目的是 培养 数学思维 做题是为了达到目的,并不在于多难 多多!书后题目 我个人认为 对于你自己对基础知识的理解 对思维方法的建立已经足够。

我看书时候就是用的 同济四版 高数 概率 线代 书 忘了什么名了。书本再好,还要自己喜欢。:)找一本自己喜欢的吧!其实上学时候用过的就可以,有条件 可以结合一下数学专业的书 目的是达到知识系统化。

我是毕业后自己在家复习的,根本没找工作 所以相对时间多。对那些在职的哥哥姐姐可能就帮不上什么忙了。但,我认为注意基础是一劳永逸的。

对于作题,众说纷纭。我个人认为是关键,但不是最关键的。最关键的,我已经强调过多次----基础。作题是为基础服务的。光做书上的题目对考研究生来说是不够。但对于解决第一轮复习来说 还是够的。以后我会介绍如何进行 第二轮 第三轮 的复习!

凉办! 放在那里,过一段时间就会了。(好象鲁迅说过)不过一定不要放弃呀!

这个问题提的有些早。分阶段,有不同的做法。看目的拉。如果你要测试自己的程度,当然要看答案,不过是作完后。现阶段还是看教材,哪里不懂看哪里。产生遗忘,再捡起。最终达到----在心里!

课本是基础,基础很重要,但决不能拘泥于课本的水平。数学一的题量、难度远非课本所比!03年我将4本教材连习题全过了一遍,用时过长,结果影响了第二轮综合复习和第三轮冲刺模拟,结果73分。烤研的数学题是又多又难,在掌握了一定的基础以后,谁的冲刺模拟卷作得早、作得多,谁的分就高。一般是10月开始作模拟题,有的8月就开始了,而我11月底才开始模拟,由于时间太紧实际上根本没怎么练。上了考场才发现平时作课本的流畅不见了,明显反应速度慢!感觉自己跟题不是一个境界的!所以以自己的教训苦柬04考友,重要是速度和难度!在课本上不能花太长时间。

这个很明显是肺腑之言啊!20xx年的考试数学之所以低,好多是因为题量大,没答完造成的。但具体做法,我不枉加评论。但有一点要知道,模拟冲刺效果的好坏,直接取决于你基础(即第一轮)复习的好坏。所以对于基础差点的 还是要稳扎稳打。多做基础题目,你也可以提高解题速度。难题分解开来不过是基础题目的堆砌!

充实过好每一天!晚上睡的自然香。睡的好,第二天,会更充实。建议找个志同的异性考研战友,男女搭配学习不累,更可以互相督处!我身边有好多成功的例子呢~~(不许歪想)

高三的数学知识点篇七

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=q,则我们称p为q的充分条件,q是p的必要条件。这里由p=q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=q”等价的逆否命题是“非q=非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

回忆一下初中学过的“等价于”这一概念;如果从命题a成立可以推出命题b成立,反过来,从命题b成立也可以推出命题a成立,那么称a等价于b,记作a=b。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题a等价于命题b,那么我们说命题a成立的充要条件是命题b成立;同时有命题b成立的充要条件是命题a成立。

(3)定义与充要条件。

数学中,只有a是b的充要条件时,才用a去定义b,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

文档为doc格式。

高三的数学知识点篇八

1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的.题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。

高三的数学知识点篇九

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

高考数学解答题部分主要考查七大主干知识:

第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。

考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。

在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。

1.知识层面。

也就是对每个章节、每个知识点的再认识、再记忆、再应用。数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。考生们在清理这些知识点时,首先是点点必记,不可遗漏。再是建立相关联的网络,做到取自一点,连成一线,使之横竖纵横都逐个、逐级并网连遍,从而牢固记忆、灵活运用。

2.能力层面。

从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。

3.创新层面。

数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。

我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。

还有一类数学解题中的创新,是代换,构造新函数新图形等等,俗称代换法、构造法,这里有更大的思维跨越,在解题的某一阶段有时出现山穷水尽,无计可施时,用代换与构造,就会使思路豁然开朗、柳暗花明、思路顺畅、解答优美,体现数学之美。常见的代换有变量代换,三角代换,整体代换;常用的构造有构造函数、构造图形、构造数列、构造不等式、构造相关模型等等。

总之,数学是一门规律性强、逻辑结构严密的学科,它有规律、有模型、有式子、有图形,只要我们掌握了它的规律、看清了模型、了解了式子、记住了图形,数学就会变成一门简单而有趣的科学。这种战略上的藐视与战术上的重视,将会使考生们超常发挥,取得优异的成绩。

高三的数学知识点篇十

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

高三的数学知识点篇十一

古今异义:

(1)于时**未静**。

古义:指战乱。今义:风浪,常用来比喻纠纷或乱子。

(2)尝从人事人事。

古义:指做官。今义:常用义,人的离合,境遇,存亡等情况,或关于工作人员的录用,培养,调配,奖罚等工作。

(3)寻程氏妹丧于武昌寻。

古义:不久。今义:常用义为“寻找”“追寻”等。

(4)悦亲戚之情话亲戚。

古义:内外亲戚,包括父母和兄弟。今义:常用于跟自己家庭有婚姻关系或血统关系的家庭的成员。

(5)幼稚盈室幼稚。

古义:小孩。今义:指不成熟的做法。

(6)于是怅然慷慨慷慨。

古义:感慨。今义:指大方的行为。

(7)恨晨光之熹微恨。

古义:遗憾。今义:指一种情感,多为“仇恨”之意。

(8)将有事于西畴有事。

古义:指耕种之事。今义:指发生某事。

文言句式:

1判断句。

皆口腹自役(“皆”表判断)。

2倒装句。

(1)复驾言兮焉求(疑问句宾语前置。“焉求”即“求焉”,追求什么)。

(2)胡为乎遑遑欲何之(疑问句宾语前置。“何之”即“之何”,到哪里去)。

(3)寻程氏妹丧于武昌(介宾结构后置)。

(4)将有事于西畴(介宾结构后置)。

(5)农人告余以春及(状语后置,“以春及告余”)。

(6)乐夫天命复奚疑(宾语前置,“疑奚”)。

高三的数学知识点篇十二

题型稳定:总体格局保持了往年陕西题目的特点,无论是选择题、填空题、还是解答题,都力争体现往年命题的`成功经验。

考点稳定:凸显了陕西高考往年常考的“考点”、“考根”。诸如在选择填空题目里常考的知识点有:集合运算,复数,反函数,直线与圆,充要条件,平面向量,抽象函数与不等关系,线性规划,排列组合,三角计算,数列极限,球体的相关计算,等等。在解答题目里,依然是三角函数的值域;立体几何里证明垂直,求二面角的大小;求概率和数学期望;求函数单调区间、函数最值、参数的取值范围;解几求方程和三角形面积取值范围,有点类似于07考题;数列与不等式证明作为压卷题目,是陕西4年命题的“不动点”,今年的理科题目也不例外。

方法稳定:题目的解答是基本的、传统的通性通法,意在检查考生对数学的本质的理解与感悟,以及考查分析问题与解决问题能力把握程度。化归转化思想的体现在每道考题里;数形结合考查的题目有理科题4,题8,题11,题12,题14,题15,题18,题21,等等;分类整合数学考查的题目有题9,题19,题20,等等;考查函数与方程思想的题目有题3,题5,题6,题20,题21;或然与必然思想考查的题目是题19;考查有限与无限思想的题目有理科题13,题22。

今年是陕西高考数学命题的第4年,也是过渡教材命题的最后一年,作为下年度新课程高考的临近,09数学试题也有一点点变革,立体几何题目从原来的第19题前移为第18题,降低了考试的要求;解析几何解答题的运算要求也有所以降低,包括理科数列不等式的证明,其代数推理、解题长度也做了进一步的简化。这也许为新课程高考的平稳过渡做了比较好多铺垫工作。

考题在传统与创新之间做了比较好的选择,理科题12、文科题10中设计的函数与不等关系,显然是函数单调性的变式,具有一定的新意。理科题11里线性规划最值逆向考题,显然是前两年考题的发展与深化。理科14题、文科16题本质是考查集合元素的计数公式,具有一定的数学背景,但作为高考题目是新颖的,也是考智能的好题。文科第21题里的数列递推关系是一个经典的题目,作为20xx年广东高考题、20xx年春季高考题,已经做了多次的改编,而陕西考题的第一问的台阶设计是比较好的,有利于第二问的顺利解答。

数学是高考的主要学科,数学成绩的高低,将会决定考生的高考命运.如何在高三比较短的时间里,获得最佳的高考数学成绩,一般是有规律可寻的,如下的几条建议也许对你是有启示的.按步思维;程序解答;回归定义;分析转化;数形结合.函数思想。分类讨论;反面入手;特殊突破; 重视通法。

数学解题,事实上就是一系列的连续化归与变形,就是将复杂的问题弄简单、弄明白.要知道,聪明人把复杂问题弄简单,而愚蠢的人是将简单的问题搞复杂.当你的心在与书交流、与数学题对白时,心头就会逐渐升起淡淡的喜悦,浮荡的灵魂就能体验到数学思维里的美妙和美妙思维里的数学.愿读者在思考中学习数学,在理解中感悟数学,在运用中体验数学。

高三的数学知识点篇十三

丁益祥北京市陈经纶中学首席数学教师,数学组组长,北京市中学数学特级教师。北京市高考(q吧)评价组成员,北京市朝阳区“专业技术、管理拔尖人才”、“学术技术带头人”。曾多次担任中央电视台、北京电视台、北京人民广播电台高考数学复习主讲教师,所教并辅导的学生在全国高中数学联赛中先后有7人获奖。

新航道高考名师丁益祥第一时间点评高考数学

《 年普通高等学校招生全国统一考试说明》(北京版数学)(以下称《京版考试说明》)中明确指出:“数学科高考旨在考查中学数学的基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力以及分析问题和解决问题的能力”。由北京考试院命制的年北京卷高考数学试题,正是按照上述原则命制的。试题注意了数学学科的特点,突出了知识的基础性和综合性,以主干知识为主体,注意在知识网络交汇点设计试题。着力体现概念性、思辨性和应用的广泛性,在数学思想、理性思维以及数学潜能方面作了比较深入的考查。除了个别试题较难外,绝大部分试题“平缓稳定”,似曾相识,但同时又稳中求变,推陈出新。既体现了“平安高考”、以生为本的人文关怀,又符合高考对选拔的要求。概括起来,主要有如下特点:

高考试题的命制要依据“两纲”,依托课本。年北京卷高考数学试题的命制,很好地遵循了“两纲”,关注了课本。如理科第(1)、(2)、(5)、(9)、(10)、(11)、(15)、(16)(18)题,文科第(1)、(2)、(4)、(5)、(6)、(7)、(9)、(10)、(11)、(12)、(15)、(16)、(17)题,都可以在课本中找到其原型。这类原于课本,高于课本的试题约占试题总量的50%。

《京版考试说明》中要求“对基础知识的考查,既全面又突出重点。” 年北京卷高考数学试题,对高中各章知识的考查较为全面,在此基础上,一方面突出了重点知识重点考查的要求,另一方面,突出了对蕴涵在数学知识本身的数学思想的考查。如理科第(2)、(3)、(5)、(8)、(12)、(13)、(18)(19)题,文科第(2)、(5)、(8)、(13)、(14)、(17)题,都涉及了对函数的考查;理科第(2)、(13)、(15)题,文科第(4)、(14)、(15)题,都涉及了对三角函数的考查;理科第(4)、(5)、(7)、(19)题,文科第(3)、(6)、19)题,都涉及了对解析几何的考查;理科第(6)、(14)、(20)题,文科第(7)、(20)题,都涉及了对数列的考查;理科第(2)、(5)、(7)、(8)、(12)、(13)、(15)题,文科第(2)、(6)、(13)、(14)、(15)题,都体现了对数学思想的考查。等等。

数学高考要求关注数学的学科特点,而概念性强、充满思辨性、应用的广泛性是数学学科的主要特点。年北京卷高考数学试题,较好地注意了对上述特点的考查。以理科为例,第(1)、(2)、(3)、(4)、(7)、(11)、(12)、(14)、(15)、(17)、(20)题都对概念的理解有着较高的.要求,其中(14)、(20)题还充满了思辨性,而(14)、(17)题体现了对数学应用的考查。要完成这些试题的求解,没有清晰的概念、没有思辩的能力、没有应用的意识是万万不行的。设计这样的试题,与“多考一点想,少考一点算”命题要求是合拍的,它可以有效地检测考生的理性思维水平。

第(16)题体现了空间图形与平面图形的交汇,第(17)题体现了两个计数原理与概率统计的交汇,第(18)题体现了函数与导数的交汇,第(20)题体现了数列与代数变换的交汇。

这些试题,既有纵向发展,又有横向联系,具有较强的综合性,充分展现了考查考生数学能力的力度。

《京版考试说明》明确指出,“考试的指导思想是:……有助于培养学生的创新精神……。”事实上,创新精神是当代中华民族自强不息、追求进取的精神,创新意识是理性思维的高层次表现。高考数学创新问题,对于考查考生面对新颖的信息、情景和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题,有着十分重要的作用。年北京卷高考数学试题,有着浓郁的创新味。文理科第(8)题,设计非常新颖,除了考查空间想象能力外,还着意考查了直觉思维能力。此外,理科第(12)、(14)、(20)题,文科第(13)、(20)题,都是比较优秀的创新型试题。值得指出的是,理科第(8)、(12)、(14)题,文科第(8)、(13)题尽管新颖,但难度不很大,体现了“新题不难”的命题要求。

随着新课程改革的实施和不断深入,数学教学应进一步倡导学生的主体参与性,关注学生自主学习能力的培养和综合素质的提高。此外,新课标课程选修4中有关专题的内容已作为高考要求。现行版课程的高考怎样逐步向课标版课程的高考过渡是值得研究的。年北京卷高考数学试题,在这方面有着很好的体现。如理科第(14)、(20)题,文科第(20)题,都着意考查考生的自主学习能力和探究能力。又如,文理科第(19)题都较好地体现了把平面几何中的有关知识与高中内容结合考查这一“过渡性的”命题思路。

年数学高考已经结束,但它给我们留下的思考才刚刚开始。北京数学高考试题以它“依纲靠本”的求实性和鲜明的创新性,为中学数学教学指明了方向。

高三的数学知识点篇十四

1、“以字行”,在本名以外所起的表示德行或本名的意义的名字。古代男子20岁女子15岁,举办成年礼,弱冠和及笄,不然不便直呼其名。故另取一与本名涵义相关的别名,称之为字,以表其德。凡人相敬而呼,必称其表德之字。后称字为表字,“以字行”是指某人的字得以通行使用,他的名反而不常用。

2、《诗经》,我国最早的诗歌总集,现实主义的源头。共收录从西周初年到春秋中叶的诗歌305篇,分为“风”“雅”“颂”三大类。“风”有十五国风,大都是民间歌谣;“雅”分大雅、小雅,是宫廷乐歌;“颂”,是宗庙祭祀的乐歌。另有“赋比兴”三种手法。赋:直抒胸臆,比:比喻,兴:气氛渲染,先言他物,再引出所要歌咏之物。例如:孔雀东南飞这篇文章,本来是想讲刘兰芝和焦仲卿的爱情悲剧,但是先讲孔雀东南飞,为了引出下文。

3、四书五经,是儒家学派经典著作。四书指《大学》--曾子、《中庸》--子思、《论语》和《孟子》;五经指《诗经》、《尚书》、《礼记》、《周易》、《春秋》,简称为“诗、书、礼、易、春秋”。

5、五陵年少:指京城富贵人家的子弟。五陵,汉代五个皇帝(高、惠、景、武、昭)的陵墓,在长安附近,富豪人家多聚居在这一带,因此后世诗文常以五陵为富豪人家聚居长安之地。唐·白居易《琵琶行》:“五陵年少争缠头,一曲红绡不知数。”

6、六艺:多指礼(礼仪)、乐(音乐)、射(射箭)、御(驾车)、书(识字)、数(计算)等六种科目。但在《师说》中的“六艺”指的是儒家经典《诗》《书》《礼》《易》《乐》《春秋》。

《诗经》的“六艺”指“风、雅、颂、赋、比、兴”,赋比兴是《诗经》的三种主要表现手法。赋:平铺直叙,铺陈、排比。相当于如今的排比。比:类比,比喻。兴:托物起兴,先言他物,然后借以联想,引出诗人所要表达的事物、思想、感情。相当于如今的象征。

7、《左传》是我国第一部叙事详细的编年史著作,相传为春秋末年鲁国史官左丘明所作。它依孔子修订的鲁史《春秋》的顺序,主要记载了东周前期二百四十五年间各国政治、经济、军事、外交和文化方面的重要事件和重要人物,是研究我国先秦历史很有价值的文献,也是优秀的散文著作。

8、《楚辞》收录了战国时期楚国屈原、宋玉等人的作品,西汉刘向汇编。这些作品运用楚地的诗歌形式、方言声韵,描写楚地风土人情,具有浓厚的地方色彩,故名《楚辞》。后世称这种诗体为“楚辞体”或“骚体”。

高三的数学知识点篇十五

1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查"三基"为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字--准确、迅速.

2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

3.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的.方法.

二、方法技巧

1、直接法:

直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支"对号入座"作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.

高三的数学知识点篇十六

1.集合的元素具有确定性、无序性和互异性.

2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.

3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即”;“并的补等于补的交,即”.

5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.

7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”.

8.充要条件。

1.指数式、对数式。

2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.

(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

3.单调性和奇偶性。

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有:.

(2)若奇函数定义域中有0,则必有.即的定义域时,是为奇函数的必要非充分条件.

3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.

(4)既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).

(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化.(即复合有意义)。

4.对称性与周期性(以下结论要消化吸收,不可强记)。

(1)函数与函数的图像关于直线(轴)对称.推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.推广二:函数,的图像关于直线(由确定)对称.

(2)函数与函数的图像关于直线(轴)对称.

(3)函数与函数的图像关于坐标原点中心对称.推广:曲线关于直线的对称曲线是;曲线关于直线的对称曲线是.

(5)类比“三角函数图像”得:若图像有两条对称轴,则必是周期函数,且一周期为.如果是r上的周期函数,且一个周期为,那么.特别:若恒成立,则.若恒成立,则.若恒成立,则.三、数列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系:(必要时请分类讨论).

注意:

2.等差数列中:

(1)等差数列公差的取值与等差数列的单调性.

(2)两等差数列对应项和(差)组成的新数列仍成等差数列.

(5)有限等差数列中,奇数项和与偶数项和的'存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.

(6)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(7)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2)成等比数列;成等比数列成等比数列.

(3)两等比数列对应项积(商)组成的新数列仍成等比数列.

(4)成等比数列.

(6)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.

(7)并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

(8)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

4.等差数列与等比数列的联系。

(1)如果数列成等差数列,那么数列(总有意义)必成等比数列.

(2)如果数列成等比数列,那么数列必成等差数列.

(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.

注意:(1)公共项仅是公共的项,其项数不一定相同,即研究.但也有少数问题中研究,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制