最新三年级数学思维教案(3篇)
文件格式:DOCX
时间:2023-03-14 00:00:00    小编:矮人爷爷带你学电

最新三年级数学思维教案(3篇)

小编:矮人爷爷带你学电

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

小学三年级数学思维训练小学三年级数学思维题篇一

通过适当的思维训练,借助适合幼儿年龄特点的一些材料,可以帮助儿童学会如何思考、如何学习,例如:如何进行分析、分类,如何进行比较、判断,如何解决问题等。掌握了正确的思维方法,就如插上了一双翅膀,使儿童的抽象思维能力得到迅速的发展和提高,从而大大提高儿童的知识水平和智力水平。

1、科学研究表明后天的环境能够显著影响儿童大脑神经元细胞的相互铰链,从而影响儿童的智力发育。经过思维训练,儿童的思维能力有显著提升的空间。

2、“幼儿英语”、“音乐艺术”、“奥数”等知识技能型的训练不能替代思维训练。思维训练的重点是“全面”和“均衡”。必须是精心设计的系统化的专门思维训练课程方可达到这个效果。

3、思维能力直接关系到儿童的学习能力,直接影响儿童在学校的表现。因此,投资思维能力这个“万能钥匙”,具有很高的回报率。

4、思维训练和知识技能灌输不同,思维训练存在一个短暂的“机会窗口”。这个机会窗口对应于儿童大脑迅速的发育的2-7岁。

小学三年级数学思维训练小学三年级数学思维题篇二

这是解决问题遇到障碍,受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。

如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。即使基础较好的学生也只能复杂的方程。

但经过转化思维训练后,学生就变得聪明起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。

这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。

如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于100。

这是一种跳跃性、活泼性、转移性很强的思维形式。

如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15。教师又问:3 个5 相乘是多少?学生答:5×5×5=125。紧接着问:3 与5 相乘是多少?学上答:3×5=15,或5×3=15。通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确。

这是一种对并列事物相似性的同实质进行识别的思维形式。

如:

①金湖粮店运来大米6吨。比运来的面粉少1/4吨、运来面粉多少吨?

②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?

以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。

小学三年级数学思维训练小学三年级数学思维题篇三

数学这门专门研究现实世界中数量关系和空间形式的科学,对于发展思维具有特殊的作用。小学数学教学的内容虽然简单,属这门科学的基础,但对于发展学生思维的能力有极其重要的作用。应用题教学是对小学生进行思维训练,培养小学生数学逻辑思维能力的最重要渠道,也是提高学生数学素质的重要途径。因此,应用题教学必须突出思维训练,展开思维过程,教给思维方法,培养思维能力。

思维的基础材料是表象,表象是对直观材料的初步概括,必须依靠感知去形成和积累。因此,充分感知积累表象是思维展开的前提和基矗在应用题教学中,教师必须根据应用题的内容,借助直观形象让学生充分感知,从中积累反映应用题数量关系的表象,继而根据表象思考解题思路,寻求解题方法,进行逻辑思维。例如教行程应用题:“张华和李诚同时从家里向学校走来,张华每分钟走65米,李诚每分钟走75米,经过4分钟,他们同时到校,他们两家相距多少米?”在理解题意阶段,教师必须通过“图象直观”(挂出题目内容示意图)和“动作直观”(让学生根据图意表演),以及符号直观(线段图)等,让学生多角度充分感知题意,从中积累反映“相向”、“同时”、“相遇”、“速度”、“速度和”、“时间”、“距离”等概念的表象,理解表象间的相互关系,为思考解题思路奠定基础。然后,才能对表象间相互关系进行分析、综合,从中找出决定整体特征的本质联系。即:距离=速度和×时间,而速度和指张华速度与李诚速度之和。这样,解题方法自然而然在分析过程中归纳出来。

分析和综合既是思维的基本过程,也是重要的逻辑思维方法。分析作为一种思维过程,是指将事物的整体分为各个部分加以研究,进而认识事物的构成和本质。综合则是把事物的各个部分、各个方面、各种因素和各个层次联系起来加以研究的思维过程。应用题解答的思维过程一般就是对应用题的'条件和问题进行分析和综合的过程。例如分数应用题:商店运来苹果200千克,梨是苹果的4/5,运来梨和苹果共多少千克?教学中,教师可运用图象直观让学生感知题意后,抓住题目中的问题进行分析,探求问题与条件的数量关系。分析时可设计系列问题,解剖题目中的“问题”部分,启迪学生思考、探究:运来的梨和苹果共多少千克中的“共”由几部分数量组成;苹果数量与条件中的什么数字联系;梨的数量与条件中的什么数字联系;如何从梨与苹果的联系中求出梨的数量。然后引导学生进行综合,从而形成解题思路,得出解题方法:先根据梨与苹果的数量关系及苹果的数量求出梨的数量,然后将梨与苹果的数量相加,得出“共多少千克”.即:200+200×4/5,然后再引导学生根据分数中单位“1”与部分的关系,简化列式为200×(1+4/5)。

比较是探求事物间异同,发现事物间联系的思维过程。进行比较有利于帮助学生避免概念混淆,分清方法优劣,找出事物间的区别与联系,从而提高学生思维能力。例如分数应用题:(1)有两捆电线,一捆长120米,比另一捆短1/3,另一捆电线长多少米?(2)有两捆电线,一捆长120米,另一捆比它短1/3,另一捆长多少米?教学中,教师可运用线段直观图让学生充分感知后,引导学生比较两题的不同点和相同点,从中引导学生明白:由于比较的标准不同,比较所得结果的含义当然也不相同,因此两题的数量关系所表达的式子也不相同。在学生经过比较列出两题算式后,教师可引导学生对两个算式进行比较,以加深学生对三个数量间关系的理解,从中分清分数乘除法应用题之间的区别与联系。

发散思维是一种创造性思维,指思维沿着多种方向展开,以获得不同思维结果。它具有多向性、独特性的特点,可采用一题多解培养学生的发散思维。实践证明,一题多解的训练既可培养学生思维的灵活性与独特性,还有利于学生数学素质的不断提高。

1.小学数学的应用题及答案

2.小学数学的工程问题应用题

3.应用题的教小学数学教学随笔范文

4.如何教小学应用题

5.小学数学应用题汇总

6.小学数学应用题教案

7.小学数学应用题的解法

8.小学数学应用题教学

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新三年级数学思维教案(3篇) 文件夹
复制