无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
1.通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.学会用数学的知识来研究生活中的饿实际问题。
1.尝试用数学方法解决实际生活中的简单实际问题。
2.尝试用数学方法解决实际生活中的简单实际问题。
1、昨天我们学习了如何找次品的方法,谁能说一说。
2、今天我们继续探讨如何去快速地找出次品的一般方法。
1、解决9个零件的问题,归纳出找次品的最优方法。
(1)出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?
老师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品?
(2)自主探索。在有一定结果以后请一个学生上台展示方法,老师帮助梳理方法:分成几份?每份各是多少?至少需要几次就一定能找出次品,?
(3)反思自己的分法并在小组内交流。老师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证伐出次品?
(4)全班汇报。老师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
(5)老师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
(6)小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。
2、推测多个零件找次品的解决办法。
(1)提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法都能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
(2)学生猜想
(3)要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想,应该怎么分,称的次数就最少而且一切能找出次品?(平均分成3份,即4,4,4。)迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
学生汇报:3次。
(4)我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2,2,8)(3,3,6)(5,5,2)(6,6)学生选择一种分法在纸上进行分析。
(5)全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
(6)小结:这样看来利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。
p137第5题
(1)学生独立完成,集体交流。
(2)让学生脱离具体的操作活动,学会用图来分析和解决数学问题,从而培养学生的抽象思维能力。本题答案是至少需要称3次。
p137第6题
(1)学生小组讨论
(2)汇报交流:与例题不同,是另一种类型的找次品,因为不知道次品比正品重还是轻,所以问题就复杂多了。对本题而言,还是分成3份,至多称2次就一定能找出次品。第一次天平两边各放一袋白糖,若天平平衡则剩下的那袋就是次品,再称一次就能判断次品是轻还是重了;若天平不平衡,则这两袋中一定有一袋是次品,可取下轻(或重)的那袋,把剩下的那袋放上天平,若天平平衡,则轻(重)的是次品,若天平不平衡,则重(轻)的是次品。对学有余力的学生,可以此题为起点,探索数量为4,5时如何找出次品。
本节课我们研究了什么问题?
a级:
p136第4题
b级:
p137你知道吗。
(一)知识与技能
利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。
(二)过程与方法
以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。
(三)情感态度和价值观
感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。
教学重点:探究解决“找次品”问题的最优策略。
教学难点:用图示或文字表示找次品的过程。
天平,多媒体课件。
(一)创设情境,引入原理
1.情境导入,揭示课题。
(1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?
(2)理解题意。
学生可能会说:倒出来数一数,或掂一掂、称一称……
教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。
如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。
【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。
2.合情推理,理解原理。
(1)了解天平的使用方法。
教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?
学生回答:天平的左边高,右边低。因为数学书比粉笔重。
教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?
学生回答:天平会平衡,因为左右两边一样重!
教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。
【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。
(2)如何利用天平找次品?
如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?
学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。
教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。
【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。
3.交流图示,掌握方法。
你能想办法把用天平找次品的过程,清楚地表示出来吗?
(1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。
(2)为了方便,还可以给每瓶钙片加上编号。
学生完成后,将作品通过实物投影仪进行展示交流。
【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的最优策略。
(二)探索规律,优化策略
1.理解题意。
(1)课件出示例2。
8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?
(2)大胆猜测。
教师:至少称几次能保证找出次品?
学生:如果运气好一次就能找到次品,所以至少一次。
学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。
学生:每次称2个零件,4次保证找出次品。
教师:“至少称几次能保证找出次品”是什么意思?
学生:既要保证找出次品,又要次数最少。
【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。
2.探索规律。
(1)分组探究,并将探索的情况填入下表。
(2)全班交流。
①分别请称4次、3次、2次的小组代表介绍本组的方法(此时学生对使用复杂的图示介绍方法可能还有困难,教师可以根据学生的回答帮助学生进行图示,为学生做出正确示范)。
②每次每边称1个的小组为什么需要的次数比较多?
学生:每次称的零件数量太少。
③每次每边称4个的小组为什么反而不如每次每边称3个的小组完成得快?
学生:每次每边称3个,称一次就可以将次品确定在更小的范围内。
【设计意图】问题②和问题③迫使学生去思考采用不同方法造成次数不同的原因,避免学生知其然而不知其所以然。因为偶然性因素的影响,学生不太容易发现“尽量三等分”这个最优化的策略。此时可以引导学生回顾例1,发现利用天平不仅可以对天平两端的零件进行判断,而且可以对没有称量的那一部分做出判断。
(3)概括最优化策略。
①如果9个零件中有1个次品(次品重一些),至少称几次能保证找出次品?怎么称?
学生:平均分成三份,每边3个,如果天平平衡,次品在剩下的3个零件中;如果天平不平衡,次品在天平下沉一端所放的3个零件中。然后再每边称1个,如果天平平衡,次品就是剩下的那1个零件;如果天平不平衡,次品就是天平下沉一端所放的那个零件。
②你发现什么规律?
学生:将所有零件平均分成三部分,保证找到次品需要的次数最少。
③用你发现的规律找出10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的?
先让学生小组讨论交流,并将找的过程用图示法记录下来,最后借助实物投影与全班进行交流。
【设计意图】通过两次操作得出结论属于不完全概括,属于猜测,而且在小学阶段也无法严密证明,只能通过大量的事实加以验证。验证的过程既可以加深理解,也可以提升学生的运用水平,并通过交流提高熟练程度。
(三)应用知识,解决问题
1.5瓶钙片中有1瓶是次品(轻一些),完成下面找次品的过程。
2.有15盒饼干,其中的14盒质量相同,另有1盒少了几块。如果能用天平称,至少称几次可以保证找出这盒饼干?
教师提示:将15盒饼干三等分,每份5盒,称一次可以确定那盒少了几块的饼干在哪5盒当中。然后参考前一题的方法找出这盒饼干。
3.有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
教师提示:将28瓶水按照9瓶、9瓶、10瓶分为三份,称一次可以确定这瓶盐水在哪一份当中。如果是在某个9瓶当中,则继续三等分找出这瓶盐水;如果在10瓶当中,可以考虑按照3瓶、3瓶、4瓶的方法继续分组,找出这瓶盐水。
【设计意图】这一环节中对练习二十七中的练习与“做一做”的顺序进行了微调,是为了体现由易到难的教学顺序。数量越大,操作和思考的过程就越复杂,对学生而言难度也越大。特别是例2后面的“做一做”对学生而言是有难度的,一是因为要称4次,二是因为28不能平均分成三等份,所以进行了调整。
(四)课堂小结,拓展延伸
1.课堂小结。
(1)今天研究了什么问题?
(2)找次品的最优化策略是什么?
2.知识拓展。
今天我们研究的问题都是已知次品比较重或比较轻,如果不知道它比较重还是比较轻,你还能找出次品吗?请有兴趣的同学回家思考。
【设计意图】教材中的“找次品”是一种理想化的问题,把不知次品轻重的问题留给学生思考,给学生更大的想象空间,可以使学有余力的学生思维能力得到更大的发展。
能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
让学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
重点能够借助纸笔对“找次品”问题进行分析。绿色圃中小学教育网
难点解决问题策略的多样性及运用优化的方法解决问题的有效性。
目标导学复习激趣目标导学自主合作汇报交流变式训练
创境激疑(一)情境导入、激发兴趣。
1.生产中多少会产生次品,这就需要质检员找出次品,今天就请你们来充当质检员,上岗前要对大家进行简单测试,看看你们的观察力和分析能力怎么样?
出示3组图片,前两组图中有一个次品,找出来,说根据。
2.师:在我们的日常生活中,也常常有这样的情况,有些物品看起来完全一样,但事实上重量不同,要么重一点要么轻一点的次品,混在合格产品里面。这节课我们就一起来研究如何“找次品”。(板书:找次品)
合作探究(二)初步认识“找次品”基本原理。
1.出示钙片提出问题:这里有3瓶钙片,其中有一瓶少了3粒,你能用什么办法把它找出来吗?师:对,我们可以用天平来帮忙找出次品。
2.让生根据讨论题同桌互相说说方法。3.学生汇报方案并上台边讲边在天平演示。师据生回答板:3(1,1,1)1次
(三)初步认识“找次品”的基本解决方法。
1.老师又拿来了两瓶钙片,和前面的三盒混在一起,你还能用天平将那盒少了两粒的钙片找出来吗?小组讨论:
(1)你把待测物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
(4)至少称几次就一定能找出次品来?
2.老师在投影上演示,边演示边讲。
(四)从多种方法中,寻找“找次品”的最佳方案。
“刚才大家都很聪明,都能在几盒钙片里找出轻的那盒次品来,那如果有的次品是比较重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有8个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
2、让学生分析讨论。
(1)让学生以四人为一小组,讨论,然后把结果填在表中。零件个数分成的份数保证能找出次品的次数
(2)汇报交流。
总结这样看来在利用天平找次品的时的最好方法:一是把待测物品分成三份;二是要分得尽量平均。
作业布置第113页练习二十七,第1题、第2题、第4题。
第114页练习二十七,第5题、第6题。
板书设计数学广角
找次品最好方法:
一是把待测物品分成三份;
二是要分得尽量平均。
人教版小学数学五年级下册“数学广角”
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
观察归纳“找次品”这类问题的最优策略。
学生4人一组;多媒体课件;立体图形。
一、创设情境、导入新课。
在学习新内容之前我想考考大家的眼里,要不要挑战一下?(幻灯片出示内容)
1、师:请找出不同类的一项
2、师:为什么我们找不到不同类的项?对因为这个物品的形状是一样的,但从外表是看不出不同的。可是它们的确有不同,那他们会有哪些方面出现不同呢?对就是是质量上的除了问题。其中一个一瓶钙片不合格,少了三片,我们称它为次品。谁有办法能从这五瓶钙片中找出次品?
(用手掂一掂、用称称)
3、师:用手一定能掂出来次品吗?(不一定)为什么不能?(相差太少的就掂不出来了)那最好的办法是什么?(用天平秤)
4、师:好今天老师就跟大家一起学习利用天平找次品的方法。
板书:找次品
二、初步感知、寻找方法。
师:现在我就以次品钙片入手,谁能用你自己的方法用天平称吃出次品?
【学情预设:学生根据自己的实践情况,会出现两种方案:①是把零件一个一个的称,需要称2次;②是在天平的两边各放2个零件,也需要称2次。在这里不急着评价哪种方法最好,只是让学生初步感知方法的多样性,为下个环节的探究做好铺垫。】
物品个数怎么分称完第一次确定几个正品称几次一定找到次品
53(2、2、1)32
55(1、1、1、1、1)22
二、初步感知、寻找方法。
1、师:用二种方法都能只需一次第一次就能找到次品,这种几率大不大?(不大)遇到这种情况我们该怎么办?我们应该做好最坏的打算。
2、师:在这里老师用提醒你了(幻灯片提示:当我们选用一种方法来分析和研究问题时,应注意那可能出现的结果考虑全面,才能得出正确的结论。)也就是说,我们想要保证找到次品(板书:保证)就一定要找出至少需要的次数。(板书:至少。)
【设计意图:让学生初步感知用天平找次品的方法。借助多媒体课件的演示,让学生明白解决问题中的偶然性和多样性,培养学生思维的严密性。】
三、自主探究、方法多样。
1、师:我想问问同学们那些物品的个数能一次找出次品?(2个)3个呢?
我现在就准备了三个盒子,其中一个是次品盒,质量比较轻谁能帮我找出这个次品盒?
3(1、1、1)一次,3(1、2)行吗?
2、师:我们在称重的时候要保证天平两边数量相等,才能找到次品盒。(天平左右两盘物体数量相等)
3、师:现在我每个盒子里都有九个球,有一个是次品球,质量比较轻,请问如何找次品球?分组讨论把那么的方法写在答题卡上。
物品个数怎么分称第一次确定几个正品称几次一定找到次品
99(1、1、1、1、1、1、1、1、1)24
94(2、2、2、2、1)43
93(4、4、1)53
93(3、3、3)62
4、师:请观察这几种方法,你认为那一种方法最好?
5、师:观察表格、比较并展开讨论:想想为什么方法4的次数是最少的?你觉得它会和什么有关系呢?
【学情预设:学生可能提出:
⑴因为方法4第一次就排除6个正品,它排除的个数最多。
⑵把物品平均分成3份。】
6、师小结:通过两个例题,我们明白在找物品的次品时,把检测的物品平均分成3份是最好的。
7、师:那谁能告诉我,刚才咱们是从几个球里面找出来的次品球?(27个)。
我现在有27个球,用咱们刚才总结出来的方法,该如何找出次品球?
27(9、9、9)9(3、3、3)3(1、1、1)
8、81个球能至少秤几次能保证找出次品球?
【设计意图:让学生在实际操作中尝试“找次品”的各种方法,通过观察、比较,并从中优化出平均分三份的方法是最好的。】
四、拓展提高,优化方案。
1、师:那么8个呢?物品个数和前几个数字有什么区别?(不能平均分成3份。)
2、师:请把你设计的方案写在表格中。
(独立完成,口头汇报设计方案。)
生反馈设计方案。
【学情预设:学生的回答可能有以下两种方案:①把8个物品平均分成2份,每份4个,最少需要称3次才一定能找到次品;②把物品分成3份(3、3、2),这种方案只要称两次就一定能找到次品。也有个别的学困生会出现把物品分成8份的。教师不要急于提示学生更正,要给学生留下发现问题的机会。】
3、师:刚才我们知道了把物品平均分成3份是最好的。而这里是8个球,不能平均分成3份。你认为应该怎么办最好?
物品个数怎么分称第一次确定几个正品称几次一定找到次品
88(4、4、0)43
88(3、3、2)62
4、师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。也就是最多的份数与最少的份数的个数只差1个。就能用最快的方法一定把次品找出来。
【设计意图:给学生创设自主学习的空间,充分发挥学生的主体性,让学生通过对比,自悟出找次品的最优方案,使求知成为学生自觉的追求,促使学生对学习产生了强烈的需求,突破了教学的重难点,培养了学生的解决问题的能力。】
五、巩固发展:
用学到的方法解决从6、7、8、12个物体中至少几次能保证找出次品。(实物演示)
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.观察归纳“找次品”这类问题的最优策略。
课件、圆片(三角形)
(一)游戏导入,引出新课
师:上课之前,老师想和大家做一个游戏,考考大家的眼力,你们愿
意吗?
生:愿意。
师:(课件出示图片)请找出下面两幅图的不同。
学生汇报
生1:第一幅图c处不同。
生2:第二幅图c处不同。
师:同学们可真厉害!这么快就找到了两幅图中的不同之处。现在有
两瓶口香糖(课件出示),可是有一瓶被一名调皮的学生吃了两颗,这两瓶口香糖的外观都一样,你能帮帮老师怎样找出那瓶少了两颗的口香糖吗?
学生讨论,汇报
生:可以用天平称一称,少了两颗口香糖的那瓶应该略轻一些,把这
两瓶口香糖分别放在天平的左右两边,天平向上的一面就是少了两颗口香糖的那瓶。
师:你说的很好!在生活中常常有这样的情况,在一些看似完全相同
的物品中混着一个质量不同(轻一些或是重一些)的物品,需要用天平把它找出来,像这一类问题我们把它叫做找次品。这节课我们就来研究《找次品》(板书课题)
(二)探究新知
1.从三瓶中找到次品
师:刚才同学们很快的从两瓶中找到了次品,如果老师这儿有三盒口
盒糖,其中有一盒是少了两粒的,你有什么办法帮忙将它找出来吗?
生:用天平找。
师:不错,依然用天平来帮助我们找到次品。提示:(1)你把待测物
品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
生:可以把待测物品分成3份,每份有1个。假如天平平衡,剩下的
就是次品,如果天平不平衡,天平上升的一侧是次品。
根据学生的汇报教师课件演示。
2.从五瓶中找到次品
师:同学们太厉害了。老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?(课件出示)
同桌合作完成,汇报
生1:可以把这5瓶口香糖分成5份,每份是1瓶,分别标上1~5号,
先拿出1号和2号称,如果天平不平衡,轻的一侧就是次品;如果天平平衡,称3号和4号,同样,如果天平不平衡,轻的一侧是次品;如果天平平衡,那么5号是次品。
师:你说的很完整。如果按照你这样称,至少需要称几次?生1:至少需要称2次。
师:还有没有不同的方法?
生2:我们把这5瓶口香糖分成3份,有两份中有两瓶,一份中有一
瓶。现在天平的左边和右边分别放上2瓶口香糖,如果天平平衡,则剩下的那瓶就是次品;如果天平不平衡,看哪一面轻,把轻的这侧的两瓶口香糖再分别放入天平的两侧,轻的一侧就是次品。至少需要称2次。
3.探究从多种方法中“找次品”的最佳方案。
师:这两个同学的方法都很好,,都能在几盒口香糖里找出轻的那盒
次品来,那如果有的次品是比是重一些的,那你又能不能把它找
出来呢?请同学们一小组为单位探讨,(课件出示例2)有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。
根据学生的回答,课件演示
师:在9个物体中,我们要找到次品就有4种方法,如果待测物体更
多,方法也就越多。我们每一次都这么找会很麻烦,有没有什么规律呢?请同学们观察屏幕中的表格,看一看哪种方法我们称的最快?
生:第三种方法最快,只称了两次就找到了次品。
师:这种方法我们是分成了几份?怎么分的?
生:平均分成了3份。
师:是否所有的次品都可以平均分成3份吗?如果不是怎么办?生:不能平均分成3份的时候,要分得尽量平均。
师:很好,就像前面我们从5个产品中找次品一样,可以把它分成三
份,并且要尽量分得平均。
(三)巩固练习
1.如果零件是10个,你认为怎样分最好?学生思考后回答,10(3,3,4)如果零件是11个呢?11(4,4,3)
2.数学书136页第2题。
(四)总结
师:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?(课件出示)“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”
“找次品”是人教版数学5年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。 在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
1、通过用天平称,猜测,画图推理等活动,学习找次品的方法,体会解决问题的策略的多样性。
2、通过讨论、探究、逻辑推理等活动,寻找找次品的优化方法,解决身边的数学问题,感受数学在日常生活中的广泛运用,初步培养学生的运用意识和解决实际问题的能力。
天平6台、测量用的相关物品若干等。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。一方面注意让学生进行合作学习,小组交流,经历找次品的过程;另一方面注意引导学生体会解决问题策略的多样性。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
(一)情景的创设
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
(二)难点转化、降低教学起点
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3个药瓶中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
(三)层层推进、符合小学生的认知规律
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
(四)、知识拓展、巩固提高
当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在集体备课后我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。通过今天教学实际来看,效果更好一些。
(五)多种教学方法、提高效率
在教学过程中,充分的运用了研究性学习的教学 方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
不足之处:
1、由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法没有反馈。
2、板书设计不好设计、很抽象,不容易使孩子们理解,因此我在设计板书时,进行了简化。用下划线来代表天平,上面的两个数字代表托盘两边的物品数量,这样就更形象一些,让孩子们也更容易理解一些。但分析天平两边出现的两种情况,不很清楚、易懂。究竟什么方法更利于学生理解,还值得探讨。
3、学生对实验过称的表达能力还有待提高,一些学生说不明白,甚至所说的别人听不懂。
六、改进设想:
1、能不能把学生熟悉的、身边的生活实例用动画式课件播放出来做导入,引出问题会更加直观、形象,吸引学生眼球,更易提高学习兴趣。
2、能不能各小组用不同数量的物品做实验,减少合作探究实验环节,让各小组有足够的时间去探究、交流,以至于能把每一次实验的过称说清楚,说明白。 五教学过程
(一)导入
1.出示天平教具,提问:这是什么?(天平)你知道天平的作用吗?它的工作原理是什么?
学生介绍自己对天平的了解,阐述天平的工作原理和特点。
天平大家都见过吗?有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会......轻的一端就会......,老师在学生发言的基础上,进一步阐述天平的工作原理。
2.创设情景,自主探索。
(1)出示钙片,提出问题:这里有3瓶钙片,其是有一瓶少了3片,你能用什么办法把它找出来吗?
(2)独立思考。老师鼓励学生大胆设想,积极发言。
全班汇报。老师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么秤来称)、用天平称(老师不急于让学生说出最佳方案,给全班留出思考空间。)
3.自主探索用天平找次品的基本方法。
(1)引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。老师指引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。导交流方法:一个一个讲,声音不要太大,能让对方听到就可以了,也可以边讲边演示,让对方可以更清楚......
(3)全班汇报。一个一个地称出重量(利用硅码);利用推理(老师手托实物模拟天平帮助演示,强调全面考虑可能出现的结果:你说的是“如果”,那还可能出现什么情况?说明什么?......
老师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用祛码称出每瓶的质量再进行比较。还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的;如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端是少的。
4.揭示课题。
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称......),哪一种更加快速、准确?(天平)在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。
(二)教学实施
1.出示例1:这里有5瓶钙片,其中1瓶少了3片,设法把它找出来。
2.让学生思考后,说出自己的想法。
(1)出示问题,引导学生利用学具自主探索:现在有5瓶钙片,其中有1瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。老师指导学生在交流中比较方法。
(3)全班汇报。较复杂的方法老师帮助板书示意图。老师在引导语中强调全面考虑可能出现的结果:怎么找?可能出观什么情况?说明什么?
(4)对几种方法的梳理、比较:分成几份?每份数量是多少?至少需要称几次就一定能找出来?
(5)老师小结:在天平的帮助下找到这瓶钙片有多种方法,可以......还可以......。除了利用学具,还可以画出示意图来帮助我们思考。
5.完成教材第1
36、137页练习二十六的第1-3题。学生独立完成,集体交流。
(1)第1题,因总数为9筐,故可平均分成3份,只称2次就能保证把吃过的那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就能称出来的,也不能保证2次就能称出来,只能保证称3次就一定能称出来,故该方法不是最优的。
(2)第2题,把15盒平均分成3份,至多3次就可能保证找出较轻的那盒饼干。
《找次品》是人教版数学五年级下册第七单元“数学广角”的内容。在现实生活中“次品”的情况各不相同,有的是外观与合格品不同,有的是所用质量不合格等。这节课的学习中要找的次品就是外观完全相同,但是质量有所差异,并且知道次品比合格品轻(或重),在所有待测物品中只有唯一的一个次品。
1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。
2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。
3.情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。
五年级学生的思维水平总体上还处在具体运算操作的发展阶段,形象思维是他们的优势。由于在前段的学习中,学生已积累了探索数字规律的.基本方法与策略,使学生学会灵活地、有序地思考,及时引导学生归纳出解决这类问题的最优策略,经历由
多样到优化的思维过程。
“找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。通过本节课的教学培养学生用数学的能力。提高学生数学思维能力和解决问题的能力。本节课以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。
12个小方块课件
课前交流
视频(美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。同学们有什么要说的吗?(不合格产品又叫次品,次品虽小,可危害巨大。而在我们的生活中常常有一些看似完全相同的物品中混着一些质量不同轻一点或重一点的次品伤害着我们。如果我们提前发现他们就能避免一些伤害。)
说到次品老师想起了一位世界名人?你们想认识吗?
生:(想)
出示比尔盖茨的图像,让学生说说对他的了解。
师赞美(同学们知识真丰富一定是一群喜欢读书喜欢学习的好孩子。老师给你们点个赞。)
看到比尔盖茨那充满自信的笑充满智慧的笑我希望我们同学和比尔盖茨一样时刻充满自信的笑智慧的笑,同学们能做到吗?同学们准备好了吗?上课
一.创设情景生成问题
1.出示情景生成问题
这节课我们一起学习如何去寻找外观相同,只有轻重不同的次品。
比尔盖茨公司在招聘员工的时候出过一道找次品的题目,想看吗?
生:想
出示课件:这儿有81瓶口香糖,其中有一瓶比其他的稍轻。如果只能用没有砝码的天平来测量,至少要称多少次才能保证把它找出来呢?
读完题目你知道了什么?有什么不明白的地方?
生(没砝码的天平怎么用)引导学生自己解决。
师小结用没有砝码的天平去称的时候次品可能在左边,也可能在右边,还可能在旁边,刚才同学们提的问题没砝码天平怎么使用现在明白了吗?生(明白)谁还有问题吗?
师:保证这两个字是什么意思?
生:自由回答,
师小结保证找到就是一定找到,那怕最坏的情况下也要找出来,不考虑运气好的情况,要考虑运气最坏的情况。
师:现在题目的意思理解了吗?
谁来大胆的猜测猜测。学生自由回答。这只是我们的猜测,那怎样验证我们的猜测呢?是不是感觉有点难啊?
当我们遇到困难时该怎么办呢?(课件展示)老子的话
老子告诉我们从容易的开始,从容易的研究解决过程之中找到规律发现方法然后再去研究解决难的问题。那你们认为从几瓶找一瓶次品最好找呢?
生;有的说2瓶有的说3瓶那就从2瓶开始可以吗?
2.探索规律
(1)从2瓶中找1瓶次品
如果从两瓶中找出一瓶次品请问怎么用没有砝码的天平去把它称出来呢?
生:两端各放一瓶上翘的那瓶就是次品。再找一名学生汇报(回答的真好,掌声鼓励)
【设计意图(从2瓶中找一瓶次品巩固学生对没砝码天平的运用。】
(2)从3瓶中找1瓶次品
二瓶好了接下来我们研究三瓶行吗?(课件展示)生思考,那谁上来给大家演示一下掌声有请(学生边说边演示)看谁听的
认真,观察的仔细,谁再来说说?看一看电脑是不是这样做的,在数学上老师把它记录下来可以这样记录:(板书)
刚才交流的时候大家用了一个词特别好
如果
那么
如果天平平衡那么剩下的那瓶是次品。天平不平衡那么上翘的那瓶是次品。
【设计意图:从3瓶中找一瓶次品巩固学生对没砝码天平的运用,初步感受找次品前先把待测物品分一分。】
称一次就知道次品在哪份中,还知道那两份中没次品。接下来研究从5瓶中找一瓶次品,独立思考,同桌交流,全班汇报。
比较从3瓶、5瓶中找次品让说发现?师生共同总结。带着我们的发现接下来我们增加点难度,同学们你们敢去挑战吗?从你们回答的声音中老师听到了你们的信心。
(3)从8、9、11、12瓶中找1瓶次品那我们以小组为单位来研究.(课件)找学生读提示。我希望我们同学在小组内能够发挥团队的力量,开始(学生操作交流)。
老师巡视时非常感动,同学们很会合作学习,分工明确,认真研究,发挥了团队的力量,找到了找次品的不同方法,我们找一组上来分享他们的成果。这个小组研究的是从九瓶糖中找一瓶次品,让学生说一说每种方法是怎么分的?怎么称的?用了几次?仔细观察这组数据你认为哪种方法最好保证找到次品所用
的次数最少?为什么?
(4)总结规律小组交流汇报结论分成三份,并且平均分保证找到次品所称的次数最少用十二验证。通过验证我们知道分成三份的,并且平均分保证找到次品所称的次数最少。那不能平均分的又有什么规律可寻那?让研究八瓶的小组上前面和大家一起分享,仔细观察这组数据你认为哪种方法最好保证找到次品所用的次数最少?我们就来研究研究这种方法。这种方法怎么分的?怎么称的?
学生汇报的基础上,得出不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少呢?用十一去验证。通过验证我们知道不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少。通过我们同学的共同努力我们在找次品的行程中完成了一次飞跃找到了找次品的最优方法。
【设计意图:让学生自主探索找次品的方法,共同优化出最优方法,感受优化过程,并且明白为什么这种方法最优化。】
三、巩固应用内化提高
现在我们找到了找次品的技巧,那么我们应用我们刚才学到的知识去比尔盖茨的公司应聘好吗?八十一能平均分成三份吗?我们应该怎么办?自己完成。呼应猜测。
【设计意图:应用回归】
四、回顾整理内化提升
让学生说收获,生自由说。老师总结:
【设计意图:让学生明白数学学习方法,数学思想,探究思路是一生的财富。】
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
:观察归纳“找次品”这类问题的最优策略。
【课件播放有关次品的视频】
师:看了刚才那段视频,你们有什么想说的?
生自由回答。
师:生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板贴:次品。)
师:次品虽小,危害却大。今天咱们就一起去找轻重不合格的次品。(板贴:找。)
师:要找轻重不合格的次品,我们要用到什么工具?(天平)
1.有关比尔·盖茨与81个玻璃球的问题
【课件出示小比尔·盖茨的问题:这儿有81个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】
让生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,让我们从数量较小的来研究吧!
2.研究2个球
【课件演示:把2个球放在天平上】
师:有2个玻璃球,其中有一个球比正常的球稍重,如果只能利用天平来测量,怎样可以找出次品呢?
师:如果次品比正常的球稍轻呢?
3.讨论3个球的问题
【课件:这儿有3个玻璃球,其中有一个球比其他的球稍重,如果只能利用天平来测量,至少要称多少次才能保证找出来呢?】
生叙述称球的过程。
【课件再次演示过程,并板书枝状图。】
师:次品可能是这三个“1”中的任意一个,但无论哪一个是次品,都只需要一次就可以保证找出次品了。
师将探究结果填入记录表中。
4.研究4个球的问题
【课件:这儿有4个玻璃球,其中有一个球比其他的球稍重,如果只能利用没天平来测量,至少要称多少次才能保证找出来呢?】
师:如果再增加一个球,4个球,一次可以保证找出次品吗?
生自由回答。
师:咱们还是动手去探究吧。
【课件出示如下小组活动要求。(1)四人一组,用棋子代替玻璃球,用尺子代替天平,摆一摆。(2)4个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)想一想,你们组的方法是否既做到了“至少”,也做到了“保证”?】
生分组探究后,上实物展台汇报,师根据生的汇报板书枝状图,同时帮助生在此环节理解“至少”和“保证”的含义。
师小结:4个球,有两种不同的测量方法,但测量的结果都是一样的,至少需要2次才能保证找出次品。
把结果记录在表格中。
师:如果只测量一次,最多可以保证在几个球中找出次品?
5.讨论9个球
【课件:这儿有9个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】
师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?
【小组活动要求如下。(1)请同学们用学具摆一摆,试试看,有几种不同的方法。(2)9个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)哪种方法符合题目中的“至少”和“保证”? 】
生在实物展台上汇报9个球的测量方法,师板书在黑板上。
生可能出现的方法如下。
引导学生观察、比较板书,哪种方法符合题意?
师:为什么把9个球分成(3,3,3)只要2次就可以找出次品?
引导学生发现:第一种方法每份分出的数量是3,次品一定在某一份的3个球里,不管是哪一份,3个球只需要一次就只可以找出次品来,所以9个球只需要2次;但第二种分法有2份分出的数量是4,4个球需要2次才能找出次品,9个球就需要3次才能保证找出次品。
师:如果球的数量在9以内,你们觉得每份分出的数量是3好还是4呢?分的时候要注意什么?
引导学生发现:每份分出的数量不能超过3。
6.5~8个球的研究
师(出示记录表):4个球只需要2次可以保证找出次品,9个球也只需要2次就能保证找出次品来,那么大胆猜测一下,在4与9之间的5、6、7、8个球至少需要几次就能找出次品呢?
请生自由画图分析,然后汇报。(重点是8个球。)
将研究结果填入表格中。
1.10个球的研究
师:10个球,称2次还能保证找出次品吗?
请生试着自己画图分一分,然后汇报。(让生明确:10个球至少需要称3次,因为无论怎么分,至少有一份超过3个球。)
师将结果填入记录表。
师:2次最多可以在几个球中找出次品?(9个。)为什么?(利用板书中的枝状图让学生明白每份最多3个,3个3就是9。)
2.3次最多能在多少个球中找出次品?
师:3次最多可以在多少个球中找出次品呢?(引导生发现每份最多放9个,3份就是3个9,即3×3×3=27个。)
师:28个球至少几次可以找出次品?
3.4次最多能在多少个球中找出次品?
(引导学生说出每份最多27个,3份就是3个27,即3×3×3×3=81,最多81个。呼应前面的小比尔盖茨的问题。)
4.观察记录表,发现规律
师:我们来仔细观察记录表,5次、6次分别能保证在多少个球中找到次品?最多多少个?
师:以此类推,测量的次数增加,可保证在更多的球中找出一个次品来。
师:今天这节课你们有什么收获?还有什么问题吗?
师:我们为什么要探究找次品?
师:我们所探究出的找次品的方法其实和以前所探究的烙饼问题、田忌赛马问题等一样,就是一个最优化的方法。生活中解决问题的方法很多,如果你发现了解决问题的最佳策略,那么解决问题时一定能够事半功倍!
找次品(教材第111页的内容及第113页练习二十七的第1题)。
1、知识与能力:尝试用数学方法解决实际生活中的简单问题。
2、过程与方法:通过观察、猜测、实验、推理等活动,指导学生体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、情感、态度与价值观:引导学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的策略问题,初步培养学生的应用意识和解决实际问题的能力。
尝试用数学方法解决实际生活中的简单问题。
学生体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
课件等。
小组合作、交流的学习方法。
出示天平教具,提问:这是什么?(天平)你知道天平的作用吗?它的工作原理是什么?
1.自主探索。
(1)出示教材第111页例1:这里有3瓶钙片,其中有一瓶少了3片,你能用什么方法把它找出来吗?
(2)独立思考。老师鼓励学生大胆设想,积极发言。
方案:打开瓶子数一数,用手掂掂,用天平称。(板书课题:找次品)
2.自主探索用天平找次品的基本方法。
(1)引导学生探索利用天平找次品的方法:大家猜猜,怎样利用天平找出这瓶少了的钙片,我们可以拿出3个学具,代替钙片,想象一下,怎样才能找出少了的那瓶?
(2)独立思考,有一定思维结果的时候小组交流。
(3)全班汇报
①一个一个地称重量(利用砝码),最轻的就是少了的那一瓶;
②利用推理:在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的。如果天平平衡,说明剩下的一瓶就是少的;如果天平不平衡,说明上扬的一端是少的。
(4)小结并揭示课题。
①综合比较几种方法(数一数,掂一掂,盘秤称,天平称),哪一种更加快速,准确?
②在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点。利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。
主题:找次品
课时:一课时
授课对象:五年级 课程标准中的相关陈述:
在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果。
学情分析:
学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课中涉及到的 “可能”、“一定”、“可能性的大小”等知识点学生在此之前都已学过的。小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
1、能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2、以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决
实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
寻找用天平找次品的“最优化”方案。
知识的拓展及用最优方法解决生活中的问题。
卡片、多媒体课件
一、 创设情景,生成问题
(播放视频)你从中了解到了什么信息?猜猜看,有可能是什么原因造成的。
二、 自主探索、合作交流
1、教学例1
师:(出示天平)同学们,老师给大家带来了一个老朋友,他是?(天平)记得吗?我们在学习方程的时候就已经认识他了。他在今天我们的学习中起到了重要的作用。
(1)初步认识天平
(2)学习例1
师:大家平时愿意帮助别人吗?老师遇到一个问题,你们愿意帮忙吗?
2.师:有个小朋友身体缺钙,买了3瓶钙片,(出示三个钙片)其中有
1瓶吃掉了几粒,这瓶比其他的要怎么样?(轻一些)这个小朋友不注意将这瓶药和另外两瓶混在了一起。怎样才能帮我把这个次品找出来?。
学生介绍各种方法。(可以数数,用手掂一掂,用天平称)
3.师:大家帮忙找到了这么多方法解决问题,你认为哪种方法好,为什么?
(1)学生利用学具自主探索:现在有3瓶钙片,其中有一瓶比较少,我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。
(3)师质疑:不进行实际称,你能利用天平的平衡原理表示出找次品的过程吗?
在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的。如果天平平衡,说明剩下的一瓶就是少的;如果天平不平衡,说明上扬的一端是少的。
(4)小结:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)
1.加强动手操作训练,促进学生的思维。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。
2.自主探索,体会优化思想。
本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。
教师准备 ppt课件 天平 药瓶
学生准备 天平
1.你们每天上学通常要走哪条路?为什么要选择这条路?
(生自主回答)
2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)
师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)
师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。
设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。
1.提出探究要求。
师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。
2.动手操作,汇报方法。
学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)
3.总结归纳记录的方法。
组织学生把用天平称的过程用图表记录下来。
师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?
理解题意,动手操作。
(1)先让学生读题,说说“至少”的含义。
(2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。
(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
发现解决这类问题的最佳策略。
理解并认可最佳策略的有效性。
活动1【导入】创设情境、激发兴趣
1、看视频,谈感受。
播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?
2、发现次品。
生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。
今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)
活动2【讲授】初步感知、寻找方法
1、出示例题。
有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?
数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。
2、天平的原理。
如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。
3、华罗庚的数学思想。
让学生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!
活动3【活动】自主探究、方法多样
1.研究2瓶
师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)
2.讨论3瓶的问题
如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)
注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。
3.研究4-8瓶的问题
如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?
学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。
课件出示小组活动要求。(1)把待测物品分成了几份?每份几个?(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?
4.重点汇报8瓶的设计方案。
(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?
(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。
(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?
(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。
5.研究9瓶
学生根据总结的方法直接说出次数,小组验证。
活动4【练习】拓展提高,优化方案
1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?
2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。
3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?