梯形面积的计算教案 梯形面积的计算教学设计利用研究教学模式(十篇)
文件格式:DOCX
时间:2023-03-18 00:00:00    小编:趴在桌子上属羊

梯形面积的计算教案 梯形面积的计算教学设计利用研究教学模式(十篇)

小编:趴在桌子上属羊

作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇一

(2)培养学生合作学习的能力。

(3)继续渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教学过程:

一、复习旧知

1.求出下面图形的面积。

2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 )

二、设疑引入

板书课题:梯形面积的计算

三、指导探索

第一部分:梯形面积公式的推导。

1.小组合作推导公式。

提纲:

2.(演示课件:拼摆梯形 )

电脑演示转化推导的全过程。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇二

梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。

下面就从以下几个方面进行剖析:

(一)以旧促新,探究新知

1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。

2、推导梯形的面积计算公式。

在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。

接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。

本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。

(二)学以致用。

在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)

总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变 "教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇三

(2)培养学生合作学习的能力。

(3)继续渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教学过程:

一、复习旧知

1.求出下面图形的面积。

2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 下载)

二、设疑引入

板书课题:梯形面积的计算

三、指导探索

第一部分:梯形面积公式的推导。

1.小组合作推导公式。

提纲:

2.(演示课件:拼摆梯形 下载)

电脑演示转化推导的全过程。

3.由学生自己说明“梯形面积=(上底+下底)×高÷2”的道理。

4.概括总结、归纳公式。

提问:(1)(上底+下底)×高求的是什么?

(2)为什么要除以2?

板书:梯形面积=(上底+下底)×高÷2

第二部分,应用公式计算。

2.提问:已知什么?求什么?怎样解答?

3、列式解答

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

四、巩固练习

1、计算下面梯形的面积。

2.动手测量学具(梯形)的相关数据,并计算梯形学具的面积。

3.下面是一座水电站拦河坝的横截面图,求它的面积。

五、质疑总结。

1.师生共同回忆这节课所学习的内容。

提问:求梯形的面积为什么要除以2?

求梯形面积需知哪些条件?

2.引导学生质疑,组织学生解题。

六、板书设计

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇四

1、说课内容:九年义务教育六年制第九册第三单元第3小节《梯形面积的计算》。这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。

2、教学目标:

情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

3、教学重、难点:

重点:理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。

难点:运用不同的方法推导出梯形的面积公式。

1、根据几何图形教学的特点,我采用了以下几点教法:

②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、通过本节课的教学,使学生掌握一些基本的学法:

①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;

②让学生学会自主发现问题,分析问题,解决问题的方法。

(一)复习旧知引出新课

1、回忆已经认识的平面图形。说说平形四边形和三角形面积的计算公式,并回想三角形面积的推导过程。

2、谈话引出课题

关于梯形你们想知道什么?(让学生说说自己的想法)

(二)讲授新课

1、直接切入主题:

对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)

2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)

3、研究建议:

①选择喜欢的梯形,按照“转化”的思路来研究。

②小组分工合作,考虑不同的转化方法。

4、自主探究,合作学习

5、分小组展示汇报,教师深化点拔。

指名说说自己是怎样做的。(边说边演示其过程)

梯形的面积=(上底+下底)×高÷2

7、引导学生用字母表示公式:s=(a+b)×h÷2

8、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)

(三)深化巩固

1、学习例1

(1)借助教具演示,理解“横截面”的含义。

(2)弄清渠口、渠底、渠深各是梯形的什么?

(3)学生尝试计算横截面积。

(四)总结,反思体验

回想这节课所学,说说自己有哪些收获?

(五)课外作业

练习十八第1——3题。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇五

教学内容: 人教版小学数学五年级上册第五单元第三节内容。

教学目标:

知识与技能:在实际情境中,认识计算梯形面积的必要性,能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力,在小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学准备:给每个小组准备梯形若干个,剪刀一把;课件。

教学过程:

一、复习导入,创设情境。

师:同学们,我们在学习平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)

师:谁来说说平行四边形式三角形的面积是怎样推导出来的?

师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。

师:在生活中,我们能看到各种形状的物体,(出示课件)这辆小汽车的车窗玻璃是什么图形?还记得梯形各部分的名称吗?(出示课件)这是一大一小两个梯形,你认为梯形面积的大小可能会与什么有关?它们之间到底有着怎样的关系呢,这节课我们就来探究梯形的面积计算。(板书课题)

二、猜测验证,自主探究。

1、生猜想。(平行四边形、长方形、三角形……)

2、公式探究。

师:你们的这些想法是否正确呢?下面咱们一起来验证一下。

先给同学们30秒的时间独立思考,自己想办法。

(30秒过后)

师:好了,下面的时间请同学们把自己的想法在小组内先交流一下,然后选出一种的方法,利用你们手中的学具推导出梯形面积公式。

3、学生进行探究,师相机指导。

4、生汇报。

师:刚才老师在下面走的时候发现第x组的同学最先推导出了梯形的面积公式,下面请第x组的同学派代表到前面展示一下你们是怎么做的。

(生展台展示)

组1:我们组用两个完全一样的梯形拼成了一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底与下底之和,从而推导出梯形的面积=(上底+下底)×高÷2(师随机贴图并板书)

师:其它组有没有不同的拼摆方法?(让生在座位上说)

请你说说你们组是怎么拼的,推导出的梯形面积公式是什么?

师:老师在下面走的时候发现有一个组采用了割补的方法推导出了梯形的面积公式,是哪个小组?请到前面展示一下。

组3:我们选择了一个梯形,沿着它的腰对折,然后剪开,再移到右边拼成了一个平行四边形,平行四边形的面积与梯形的面积相等,平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形高的一半,所以梯形的面积=(上底+下底)×高÷2(师随机贴图)

师:哪个小组还有不同的方法?

组 4:我们组把梯形剪成了两个三角形,得出梯形的面积等于两个三角形面积之和,这个小三角形的底等于梯形的上底,高等于梯形的高,所以小三角形的面积=上底 ×高÷2,这个大三角形的底等于梯形的下底,高等于梯形的高,所以大三角形的面积=下底×高÷2,从而推导出梯形的面积=上底×高÷2+下底×高÷2(师随机贴图)

(注:师在生汇报的过程中要让生到黑板上画出小三角形也就是钝角三角形的高在哪里,并引导生说明钝角三角形的高为什么和梯形的高相等)

师:刚才同学们说出了这么多的方法,你们真了不起!老师也想出了一种方法,我们一起来看看。

(幻灯出示转化过程)

师:谁能根据老师展出的这种方法推导出梯形的面积公式?

生口头叙述。

师:你真聪明!其实推导梯形面积公式的方法还有很多很多,有兴趣的同学可利用课下时间进一步探究。

生:s=(a+b)h÷2

(师板书)

三、实践运用,解决问题

接下来我们一起走进生活,来解决一个实际问题。

师:课件出示例题:

(这是我国长江三峡水电站大坝,它的横截面的一部分是梯形,求它的面积。)

师:让生以最快的速度在练习本上只列式不解答。老师算了一下这道题的结果,等于10530平方米,同学们可利用课下时间验证一下老师算的到底对不对。

师:梯形的面积应用很广泛,在很多物体中经常会看到梯形。下面我们来解决另一个日常生活中的问题。(幻灯出示)

一辆汽车侧面的两块玻璃是梯形(如下图),它们的面积分别是多少?

师:好,剩下的时间我们来解决其他问题。

1.算出下面每个梯形的面积。(单位:厘米)90 页第3题

2.判断题。

(1)两个梯形都能拼成一个平行四边形。( )

(2)两个形状一样的梯形一定能拼成一个平行四边形。( )

(3)两个完全一样的梯形一定能拼成一个平行 四边形。 ( )

(4)平行四边形的面积是梯形面积的2倍。( )

3选择题

(1)梯形的上底是4米,下底是6米,高是5米,它的面积是( ) 。

a. 45平方米 b. 25平方米 c. 25米

( 2 ) 一个梯形上底是80厘米,下底是12分米.高是5分米,它的面积是( )平方分米。

a 50 b. 25 c. 230

4. 90 页第3题

四、小结。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇六

1让学生在实际情境中,认识计算梯形面积的必要性。

2在自主探索活动中,让学生经历推导梯形面积公式的过程。

教学重难点:

理解梯形面积公式的推导过程,帮助学生形成思考问题的习惯。

教学准备:

梯形纸片、多媒体课件、剪刀。

教学过程:

二探究新知

实际操作,自主探究。

1独立操作,自主探索。

学生用事先准备的学具自己进行剪拼,在探索的过程中,逐步形成特有的思考问题的习惯。

2小组讨论。

四人小组继续运用转化的方法将梯形转化成前面学过的图形,进而求出梯形的面积。

3交流汇报,发现规律。

(1)引导观察,转化后的图形与原来的梯形有什么关系?请学生用语言描述梯形面积的推导过程。

(3)经观察分析后,引导学生得出结论,并用字母公式来表示。

三看书质疑,交流感想

阅读第24页内容,回顾自己探索梯形面积公式的过程,并与同伴谈谈自己的想法。

完成课前提出的问题

四巩固应用,拓展提高

完成25页习题

五全课总结与反思

通过本课的学习,你又有哪些收获?你在学习方法上又有了那些提高

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇七

教学内容: 人教版小学数学五年级上册第五单元第三节内容。

教学目标:

知识与技能:在实际情境中,认识计算梯形面积的必要性,能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力,在小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学准备:给每个小组准备梯形若干个,剪刀一把;课件。

教学过程:

一、复习导入,创设情境。

师:同学们,我们在学习平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)

师:谁来说说平行四边形式三角形的面积是怎样推导出来的?

(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)

师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。

师:在生活中,我们能看到各种形状的物体,(出示课件)这辆小汽车的车窗玻璃是什么图形?还记得梯形各部分的名称吗?(出示课件)这是一大一小两个梯形,你认为梯形面积的大小可能会与什么有关?它们之间到底有着怎样的关系呢,这节课我们就来探究梯形的面积计算。(板书课题)

二、猜测验证,自主探究。

1、生猜想。(平行四边形、长方形、三角形……)

2、公式探究。

师:你们的这些想法是否正确呢?下面咱们一起来验证一下。

先给同学们30秒的时间独立思考,自己想办法。

(30秒过后)

师:好了,下面的时间请同学们把自己的想法在小组内先交流一下,然后选出一种的方法,利用你们手中的学具推导出梯形面积公式。

3、学生进行探究,师相机指导。

4、生汇报。

师:刚才老师在下面走的时候发现第x组的同学最先推导出了梯形的面积公式,下面请第x组的同学派代表到前面展示一下你们是怎么做的。

(生展台展示)

组1:我们组用两个完全一样的梯形拼成了一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底与下底之和,从而推导出梯形的面积=(上底+下底)×高÷2(师随机贴图并板书)

师:其它组有没有不同的拼摆方法?(让生在座位上说)

请你说说你们组是怎么拼的,推导出的梯形面积公式是什么?

师:老师在下面走的时候发现有一个组采用了割补的方法推导出了梯形的面积公式,是哪个小组?请到前面展示一下。

组3:我们选择了一个梯形,沿着它的腰对折,然后剪开,再移到右边拼成了一个平行四边形,平行四边形的面积与梯形的面积相等,平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形高的一半,所以梯形的面积=(上底+下底)×高÷2(师随机贴图)

师:哪个小组还有不同的方法?

组 4:我们组把梯形剪成了两个三角形,得出梯形的面积等于两个三角形面积之和,这个小三角形的底等于梯形的上底,高等于梯形的高,所以小三角形的面积=上底 ×高÷2,这个大三角形的底等于梯形的下底,高等于梯形的高,所以大三角形的面积=下底×高÷2,从而推导出梯形的面积=上底×高÷2+下底×高÷2(师随机贴图)

(注:师在生汇报的过程中要让生到黑板上画出小三角形也就是钝角三角形的高在哪里,并引导生说明钝角三角形的高为什么和梯形的高相等)

师:刚才同学们说出了这么多的方法,你们真了不起!老师也想出了一种方法,我们一起来看看。

(幻灯出示转化过程)

师:谁能根据老师展出的这种方法推导出梯形的面积公式?

生口头叙述。

师:你真聪明!其实推导梯形面积公式的方法还有很多很多,有兴趣的同学可利用课下时间进一步探究。

生:s=(a+b)h÷2

(师板书)

三、实践运用,解决问题

接下来我们一起走进生活,来解决一个实际问题。

师:课件出示例题:

(这是我国长江三峡水电站大坝,它的横截面的一部分是梯形,求它的面积。)

师:让生以最快的速度在练习本上只列式不解答。老师算了一下这道题的结果,等于10530平方米,同学们可利用课下时间验证一下老师算的到底对不对。

师:梯形的面积应用很广泛,在很多物体中经常会看到梯形。下面我们来解决另一个日常生活中的问题。(幻灯出示)

一辆汽车侧面的两块玻璃是梯形(如下图),它们的面积分别是多少?

师:好,剩下的时间我们来解决其他问题。

1.算出下面每个梯形的面积。(单位:厘米)90 页第3题

2.判断题。

(1)两个梯形都能拼成一个平行四边形。( )

(2)两个形状一样的梯形一定能拼成一个平行四边形。( )

(3)两个完全一样的梯形一定能拼成一个平行 四边形。 ( )

(4)平行四边形的面积是梯形面积的2倍。( )

3选择题

(1)梯形的上底是4米,下底是6米,高是5米,它的面积是( ) 。

a. 45平方米 b. 25平方米 c. 25米

( 2 ) 一个梯形上底是80厘米,下底是12分米.高是5分米,它的面积是( )平方分米。

a 50 b. 25 c. 230

4. 90 页第3题

四、小结。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇八

“梯形面积的计算”是在学生已经熟练掌握了长方形、正方形,尤其是平行四边形、三角形面积计算,和梯形的认识的基础上学习的一个“几何求积”的数学问题。由于在上述学习中,学生已通过操作、实验等积累了探索平面图形面积计算公式的基本方法和策略(剪、移、转、拼等)并初步领悟了“新旧转化”的数学思想方法,都为学生自主研究、探索“梯形的面积计算”创造必要的条件,打下了良好的基础。基于以上认识,我在导学梯形的面积公式时,并没有沿袭以往的教学思路,而是立足与学生已有的数学现实与经验,以此为出发点,通过引导学生经历“发现问题——提出假设——进行验证——实践应用”,让学生在数学的再创造过程中建构新知,解决问题,获得体验。

教学目标:

1、引导学生主动参与探索,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

2、结合学习过程,培养学生观察、操作、比较、推理等逻辑思维能力和初步的假设、试验和验证等科学探究能力。

3、进一步培养学生的空间观念,不断发展学生的空间想象力,培养学生的实践能力和创新意识,体验数学再创造的乐趣,并使不同的学生获得个性化的发展。

教学重、难点:运用转化思想推导梯形面积的计算公式。

教具、学具准备:一般梯形两个,两个完全一样的梯形,剪刀等。

教学过程:

一、自由操作联想,作好新课孕伏。

师:对于梯形,你们已经知道了什么?(可让学生自由发表)利用你手中的梯形,动手折折、剪剪、拼拼,还能发现些什么?(学生独立操作,在此基础上,在同桌或小组内交流自己的发现)

生1:我发现任何梯形都可以分成两个三角形;

生4:我们发现梯形可分成一个三角形和一个平行四边形;

生5:还可以将梯形先剪下一个小三角形,再将剪下的小三角形通过旋转、平移的方法和剩下的图形拼成一个大三角形。

生6:我们认为还可以将梯形从中间剪开,分成两个梯形,然后将其中的一个梯形通过旋转、平移,和另一个梯形拼成一个平行四边形。(图略)

……

师:善于观察、勇于实践,才给同学们带来如此丰富的发现,真了不得!

二、“假设——验证——交流”,体验数学再创造乐趣

1、假设

师:请大家再想一想,这些方法都有一个共同之处,你看出来了吗?

生:都是将梯形转化成了我们已经学过的图形。

……

2、验证:

师:作出的假设是否正确,关键在于能不能经得住实验的验证。请大家借助手头的材料,小组互相合作,大胆试试看,并将结果记录下来。

(学生独立或合作尝试转化,教师深入倾听,对有困难学生进行必要的提示和启发。)

3、汇报、交流、评价:

师:不少同学已经成功对自己的假设进行了验证,请哪个小组先来展示你们验证的结果和方法?(学生借助实物投影展示各自的方法和结论)

生1:我们是将两个完全一样的梯形转化为一个平行四边形的,这个平行四边形的底是梯形上下底的和,高就是梯形的高,而梯形的面积只有平行四边形面积的一半。

因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×高÷2。

(掌声)教师表扬。

生2:我们组将梯形分成了两个三角形。因为:小三角形的面积=上底×高÷2,大三角形的面积=下底×高÷2,所以:梯形的面积=上底×高÷2+下底×高÷2 = (上底+下底)×高÷2。

生4:我们小组沿着梯形的两条高,将梯形分成了一个长方形和两个三角形,长方形的面积可以求出,但三角形的面积无法求出,因为三角形的底不知道。

生5:我认为可以求出,但不知是否正确?

师:说说看,说错了也没问题。

生5继续:单独求其中一个三角形的面积比较困难,能不能将这两个三角形合并成一个大的三角形呢?因为它们都是直角三角形,而且高又相等。

生6:我发现了,这个三角形的底应该等于梯形的下底与上底的差。这样,长方形的面积为“上底×高”,两个三角形的面积为“(下底-上底)×高÷2”,合起来再化简即得“梯形的面积﹦(上底+下底)×高÷2”。

生7:我们小组将梯形右下方的小三角形剪下,再翻转上去,拼成一个平行四边形。平行四边形的底相当于梯形上下底和的一半,平行四边形的高相当于梯形的高。所以“梯形的面积=(上底+下底)÷2×高”。

……

生:s=(a+b)h÷2

师:说一说各字母的意义。

三、在实践中拓展、延伸

1、生尝试练习,帮助理解“横截面”的意义。

2、说一说计算梯形的面积应注意什么?

3、想一想,算一算:

出示圆木图,求圆木的根树。

4、计算:1+2+3+4+5+6+7+8+9= (想一想,怎样算比较简便)

四、全课小结:

1、通过这节课的学习,每个同学都有很大收获,谈谈你的收获。

2、还有什么不懂的吗?

五、作业:(略)

教后反思:

1、探索新型情感性课堂教学,还学生的主体地位。

新的《数学课程标准》多处强调:“学生是数学学习的主人”,“数学教学,要紧密联系学生的生活环境,从学生的生活经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。” 本课教学中尊重每一位学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题。《梯形面积的计算》一个,从课开始的自由操作联想,到公式推导的全过程,到公式的应用,自始至终都能将学生放到主体的地位上。通过学生的实验、操作、交流,让学生构建梯形与长方形、平行四边形、三角形之间的联系,从而正确的推导出梯形面积的计算公式,并灵活的应用于生活实际。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇九

九年义务教育小学《数学》教科书(人教版)第九册。

【教材分析】

梯形而积的计算是在学生学会计算平行四边形、三角形的面积计算的基础上进行教学的。教材的编排不同于平行四边形和三角形。它的编排特点是引导学生把梯形转化为已经学过的图形。

再求面积。因此教材的编写跨越了数方格的感性认识阶段。引导学生思考怎样仿照求三角形面积的方法。用转化的思想。探究梯形面积的计算方法。这部分内容是学生以后学习圆面积和立体图形表面积的基础。

【学情分析】

学习本课内容时学生己经掌握了长方形、正方形、平行四边形、三角形的面积计算方法。而且在学习平行四边形、三角形面积时。对转化、平移等数学思想的方法己经有了一定的认识。学生具备一定的知识和方法基础。因此。梯形面积的学习是运用旧知识解决新问题。实现迁移类推和新旧转化。进一步发展学生思维的创新能力和动手实践能力。

【教学目标】

1.使学生用转化的思想方法自行尝试学习,通过不同途径探究推导出梯形面积的计算方法。学会应用公式计算梯形的面积。

2.进一步发展学生利用旧知识解决新问题的能力。发展学生的创造思维能力、动手实践能力。通过讨论、争辩、操作和推理。提高学生解决实际问题的能力。发展学生的空间概念。

3.向学生渗透转化的思想。培养学生的合作意识和竞争意识。

【教学准备】

多媒体课件。同样大小的梯形纸片(至少四弓长)。剪刀。

【教学过程】

一、复习旧知,引入探究情境

1.教师谈话:请说出所学过的平面图形的面积计算公式。

4.下面就请同学利用手中的材料动手实践。进行验证。

【设计意图】:通过义习。梳理学过的直线型图形的而积计算公式。并通过质疑激发学生自主探究的*。

二、自主探究,寻求规律

(一)推导面积计算公式1.谈话指导:请同学们根据我们以前学过的有关平面图形面积计算公式推导的知识和方法。利用自己手中的材料以小组为单位尝试推导梯形的面积。

2.学生尝试探究验证。教师巡视观察指导学生的学习方法并帮助学习有困难的小组。

【设计意图】:给学生提供充分动手动脑的机会,给学生利用旧知探求新知的时间。把知识产生的过程创造出来。培养学生的探究精神并学会探究的方法。

3.展示汇报自己的学习成果。

(1)让学生自由发表意见,说出自己转化推导的方法。

(2)教师配合学生的叙述。用课件演示梯形是如何转化成己学过的平而图形的,并让其他同学质疑、评价(这里可能会出现拼一拼、割补、分一分等多种方案)。

4.引导学生总结计算公式。

(2)教师根据学生的回答进行小结并板书:

(1)二上底加下底”指的是什么?

(2)为什么要“除以2"?

【设计意图】:学生通过自主探究合作交流。不仅知道了梯形的面积计算公式。而且更明确如此计算的原因。达到“知其然。

更知其所以然”的学习效果。培养学生科学学习的习惯和创新能力。通过教师的课件演示,使学生形象地感知转化思想的内涵。

2.学生自己尝试独立计算。

3.学生互相出题进行公式应用练习。

【设计意图】:通过学生互相出题训练。不但巩固了知识。而且实现学生真正的自主参与。同时充分地发挥了学生的聪明才智,使训练多样而有趣。变苦学为乐学。

三、巩固练习完成做一做。

2.完成练习十九的1-4题。

3.灵活变换条件。联系实际进行练习。

4.拓展尝试:下图是两个相同的汽角三角形补在一起。求涂色部分的面积。(单位:分米)

【设计意图】:灵活的练习是检验学习效果的有效方法。联系实际能充分体现学以致用的原则。数学来源于生活更应该服务于生活,因此。联系实际的练习才是更为科学的训练方法。

【教学反思】

本节课的学习是由学生独立思考、讨论、归纳、概括解决的。体现了学生主体的发展。但不足之处是:由于学生个体间发展的不平衡。因此并不是每一个学生都能去积极地思考、讨论。另外。还应多提一些开放性强的问题。使学生的思维得到充分的训练。

梯形面积的计算教案梯形面积的计算教学设计利用研究教学模式篇十

这节课是人教版六年制小学数学第九册的教学内容,是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习计算组合图形面积计算的基础。

本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。

2、教学目标

根据新课标提倡的三维目标教学,我给学生制定的学习目标是:

(1).在实际情境中,尝试计算梯形的面积。

(2).通过预习,引导学生在自主参与探索的过程中,发现梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

(3).通过操作,培养学生的迁移类推能力和抽象概括能力。

3、教学的重点、难点、关键

由于学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。所以教学的重点:理解并运用梯形的面积计算公式。教学的难点:梯形面积公式的推导过程。教学的关键是怎样把梯形转化为学过的图形来推导出梯形的面积公式。

二、教学实施过程:

基于上述认识与理解,我对梯形的面积计算教学流程作了如下设计:

检查预习—— 合作探究——汇报交流——应用新知

第一环节:检查预习(4分钟)

这环节分两个部分:先让学生回忆三角形面积公式的推导过程。

这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。

接着出示灌溉堤坝的横截面,呈现实际情境,感受计算梯形面积的必要性,学生尝试计算,检查预习。

这样导入,使学生感受数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。

第二环节:动手操作,探究交流(8分钟)

第三环节:抽象概括,总结提高(6分钟)

在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,让学生利用字母表述出计算公式,体现学与析的重要作用。来鼓励学生采用多种方法进行推理,让学生各抒已见。

通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。

第四环节:应用新知,深化提高(5分钟)

通过动手操作,自主探究,学生获得梯形面积的计算公式后,我出示了课本的例题,求梯形水渠的横截面面积。 通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力, “学以致用”,来解决生活的实际问题。

第五环节:巩固练习,形成技能(14分钟)

练习的第一题是回应引入,给出一个灌溉堤坝的横截面,求出它的面积。

为了提高趣味性,第二题是动手操作题,先测量出自己所剪的梯形学具,再求面积。

第三题是判断题,判断出对错并且说出原因,提高学生对新课的理解。

(1)两个面积相等的梯形可以拼成一个平行四边形。 ( )

(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。 ( )

(3)梯形的面积等于平行四边形面积的一半。 ( )

(4)两个梯形面积相等,但形状不一定相同。 ( )

第四题是思考题,

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
梯形面积的计算教案 梯形面积的计算教学设计利用研究教学模式(十篇) 文件夹
复制