2025年《变量与函数》教学反思简短(7篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
《变量与函数》教学反思简短篇一
本设计呈现的课堂结构为:
(1)揭示学习目标;
(2)引入数学原型;
(3)抽象出数学现实,逐步达致数学形式化的概念;
(4)巩固概念练习(概念辨析);
(5)小结(质疑)
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学a与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎。
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?
通过哪一个量可以确定另一个量?”在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。
在备课时,我想从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得t的对应值只有一个,学生习惯性地提出问题“温度t取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.而在(2)班实际上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度t=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。
后来在(1)班上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温t的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。
《变量与函数》教学反思简短篇二
在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务.之前,我分别在本校与广州开发区中学分别上了一堂课.三节课,是一个实践、反思、改进、再实践的过程.经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解.
(1)揭示学习目标;
(2)引入数学原型;
(3)抽象出数学现实,逐步达致数学形式化的概念;
(4)巩固概念练习(概念辨析);
(5)小结(质疑).
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?
数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学a与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.
函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容.
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.
本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.
由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。
对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎.
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”
在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征.
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.
概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向.
在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得t的对应值只有一个,学生习惯性地提出问题“温度t取定一个值时,时间t 是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.
在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度t=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力.
在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温t的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯.
《变量与函数》教学反思简短篇三
这节课主要让学生理解并掌握不等式的定义,不等式的解,不等式的解集,解不等式的意义,会把解集在数轴上表示出来。以学生课外预习为前提开展教学的。
课本中的实际问题情境创设,都是由学生课外自学来完成,从而给予学生更多的学习思考时间,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。教学中要突出知识之间的内在联系。不等式与方程一样,都是反映客观事物变化规律及其关系的模型。在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义。引导学生类比等式及方程的有关知识,于知识的迁移过程中较好地体悟所学的内容。学生数学语言概括能力,互助学习,合作学习的能力得到提高,数形结合思想渗透较好
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。
但是,课后及作业中出现以下错误
1、不大于,不小于,弄不清楚;
2、用不等式表示某些语句,个别学生读不懂题意;
3、用不等式解决简单的实际问题,出现错误较多;
4、不能较好的运用所学知识解决相关问题。
5、一些解题中的细节要注意,例如用数轴来表示解集时,折线向左向右学生没有真正是什么意思,什么时候用实心圆点还是空心圆圈没有区别等等。
6、课堂教学时间,多听学生讲出他们自己的的理解和解题思路,有利于培养学生的数学语言表达能力。
今后教学中,要注重基础知识的学习,满足学生多样化的学习需求的同时,注意学生各方面能力的培养和学习习惯的培养。
《变量与函数》教学反思简短篇四
在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务.之前,我分别在本校与广州开发区中学分别上了一堂课.三节课,是一个实践、反思、改进、再实践的过程.经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解.
本设计呈现的课堂结构为:
(1)揭示学习目标;
(2)引入数学原型;
(3)抽象出数学现实,逐步达致数学形式化的概念;
(4)巩固概念练习(概念辨析);
(5)小结(质疑).
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?
数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学a与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.
函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容.
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.
本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.
由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。
对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎.
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”
在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征.
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.
概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向.
在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得t的对应值只有一个,学生习惯性地提出问题“温度t取定一个值时,时间t 是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.
在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度t=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力.
在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温t的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯.
《变量与函数》教学反思简短篇五
变量与函数的意义是学生难以理解的概念,本课的学习必须用足力气,怎样引起学生的重视,除了学前动员,还有就是利用课本的编排特征加以说明,一般数学新知识的引进有一两个引例就可以了,本课为了引进新知识,课本上安排了五个引例!
在课堂学习时,五个还是要一个一个地研究过去,紧紧围绕着函数的定义解读,初步领会引例的意图,还要舍得用很到的篇幅举出一些变化的实例,指出其中的常量和变量,开始学生举出了几个例子,再由学习小组讨论交流,每个小组都收集五个以上的实例。安排这个活动的意图是让学生感知现实生活中有很多变化着的量,并且两个变化着的量都有各自的数量关系、我们要善于发现这些数量关系,用数学的眼光观察现实世界。再结合课本上的五个引例和学生举出的实例分析解剖,得到函数的概念(一般地,在某个变化的过程中,有两个变量x与y,对于其中一个变量x的每一个确定的值,另一个变量y都有唯一确定的值与其对应,那么x叫做自变量,y叫做x的函数)。对照定义再回到五个引例及学生举出的实例,体会函数的意义。
函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:
1有两个变量,
2一个变量的值随另一个变量的值的变化而变化,
3一个变量的值确定另一个变量总有唯一确定的值与其对应;
函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。
作了上面的学习过程,使我们这一课更加厚重。
《变量与函数》教学反思简短篇六
在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。之前,我分别在本校与广州开发区中学分别上了一堂课。三节课,是一个实践、反思、改进、再实践的过程。经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。
本设计呈现的课堂结构为:
(1)揭示学习目标;
(2)引入数学原型;
(3)抽象出数学现实,逐步达致数学形式化的概念;
(4)巩固概念练习(概念辨析);
(5)小结(质疑)。
1、如何揭示学习目标
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?
数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。初中涉及的函数概念的核心是“量与量之间的特殊对应关系”。本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高。你知道其中的道理吗?”、“引例2。我们班中同学a与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外。问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系。上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”。数学研究有时从最简单、特殊的情况入手,化繁为简。让学生明确,这一节课我们只研究两个量之间的特殊对应关系。“特殊在什么地方?”学生需带着这样的问题开始这一课的学习。
函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法。当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。
2、如何选取合适的数学原型
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单。真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等。简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质。
本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)。这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念。
由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。
对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象。过难、过繁的背景会成为学生学习抽象新概念的拦路虎。
3、如何引领学生经历数学化、形式化的过程
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境。但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节。从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题。本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”
在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量。由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。
4、如何引用反例
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵。反例引用的时机、反例的量要恰到好处。过早、过多的反例会干扰学生对概念的准确理解。
概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景。这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。
在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得t的对应值只有一个,学生习惯性地提出问题“温度t取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系。
在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度t=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。
在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温t的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。
《变量与函数》教学反思简短篇七
本课例是学习函数后的第二个课时,但是安排的容量比较大,包括了“函数”这比较抽象的概念理解,函数自变量取值范围及函数值的计算,从学生的掌握情况看效果还比较好。
首先,本课例在处理“函数”这一抽象概念时,紧紧抓住“对的确定的一个值,都有唯一的值与其对应”中的“唯一”,并通过不断地运用具体例子来让学生感受“唯一”。
其次,本课例的过渡处理得比较好。例如,在讲授自变量的取值范围时,先通过一般的没背景要求的式子分类学习,再到实际问题的过渡,让学生非常清晰地知道实际问题与一般代数式之间是区别比较大的,并且对于实际问题的自变量取值范围的思考与计算都详细讲授。
再次,本课例的重难点处理得比较好。学生对函数的概念及自变量的取值范围的理解是难点,本节课进行了重点讲授,而求函数值的问题则是比较简单,进行了略讲。
第四,本课例还注重培养学生注意问题间的区别,防止学生概念混乱。
本课例从检测的效果与培养学生的思维来看是一个不错的课例。