最新数学函数教案全册 数学函数教案 详案
文件夹
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
教学目的:掌握对数的换底公式,并能解决有关的化简、求值、证明问题。教学重点:换底公式及推论
教学难点:换底公式的证明和灵活应用.教学过程:
一、复习:对数的运算法则
导入新课:对数的运算的前提条件是“同底”,如果底不同怎么办?
二、新授内容:
1.对数换底公式:
loganlogmn(a > 0 ,a 1,m > 0 ,m 1,n>0)logma证明:设 loga n = x , 则 ax = n 两边取以m 为底的对数:logmaxlogmnxlogmalogmn
从而得:x2常用的推论: ①logablogba1,logablogbclogca1 ② logambn3logab○
三、例题:
例1 已知 log23 = a,log37 = b, 用 a, b 表示log42 56 解:因为log23 = a,则 ∴log 42 561log32 , 又∵log37 = b, anlogab(a, b > 0且均不为1,m≠0)mlogmnlogmn ∴ logan logmalogma1(a0,a1,b0,b1)logbalog356log373log32ab3 log342log37log321abb11log0.235例2计算:① ② log43log92log1432
2 解:①原式 = 55log0.2355log5135*** ②原式 = log23log32log22
224442例3设x,y,z(0,)且3x4y6z(1)求证 111 ;(2)比较3x,4y,6z的大小。x2yz 证明(1):设3x4y6zk ∵x,y,z(0,)∴k
1取对数得:xlgklgklgk,y,z lg3lg4lg6 ∴11lg3lg42lg3lg42lg32lg2lg61 x2ylgk2lgk2lgk2lgklgkzlgklg64lg64lg8134810 lgk)lgk(2)3x4y(lg3lg4lg3lg4lg3lg4 ∴3x4y
9lg36lg6446160 lgk)lgk 又:4y6z(lg2lg6lg2lg6lg4lg6lgklg ∴4y6z
∴3x4y6z
例4已知logax=logac+b,求x 分析:由于x作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b的存在使变形产生困难,故可考虑将logac移到等式左端,或者将b变为对数形式。解法一:
由对数定义可知:xa解法二:
由已知移项可得logaxlogacb,即loga由对数定义知:解法三: xab xcab cxb clogacbalogacabcab
blogaab logaxlogaclogaablogacab xcab
例5 计算:(log43log83)(log32log92)log1432
25 解:原式(log4223log233)(log32log322)log12
2 (12log313log15223)(log322log32)4
56log35555232log324442
例6.若 log34log48log8mlog42 求 m
解:由题意:lg4lg3lg8lg4lgmlg812 ∴lgm12lg
3四、课后作业: 1.证明:logaxlogx1logab
ab2.已知loga1b1loga2b2loganbn
求证:loga1a2an(b1b2bn)
提示:用换底公式和等比定理
m3 ∴
高中数学辅导网 http://ca(a>0,a≠1,c>0,c≠1,n>0);
(2)logab·logbc=logac;
(3)logab=1logba(b>0,b≠1);
(4)loganbm=mnlogab.解析(1)设logan=b得ab=n,两边取以c为底的对数求出b就可能得证.(2)中logbc能否也换成以a为底的对数.(3)应用(1)将logab换成以b为底的对数.(4)应用(1)将loganbm换成以a为底的对数.解答(1)设logan=b,则ab=n,两边取以c为底的对数得:b·logca=logcn, ∴b=logcnlogca.∴logan=logcnlogca.(2)由(1)logbc=logaclogab.所以 logab·logbc=logab·logaclogab=logac.(3)由(1)logab=logbblogba=1logba.解题规律
(1)中logan=logcnlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用.对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.7
京翰教育1对1家教 http:///
高中数学辅导网 http:// 已知log67=a,3b=4,求log127.解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢? 解答已知log67=a,log34=b, ∴log127=log67log612=a1+log62.又log62=log32log36=log321+log32, 由log34=b,得2log32=b.∴log32=b2,∴log62=b21+b2=b2+b.∴log127=a1+b2+b=a(2+b)2+2b.解题技巧
利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧8 已知x,y,z∈r+,且3x=4y=6z.(1)求满足2x=py的p值;
(2)求与p最接近的整数值;
(3)求证:12y=1z-1x.解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?
解答(1)解法一3x=4ylog33x=log34yx=ylog342x=2ylog34=ylog316, ∴p=log316.解法二设3x=4y=m,取对数得:
x·lg3=lgm,ylg4=lgm,∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.由2y=py, 得 2lgmlg3=plgmlg4, ∴p=2lg4lg3=lg42lg3=log316.(2)∵2=log39
又3-p=log327-log316=log32716, p-2=log316-log39=log3169, 而2716
∴log327163-p.∴与p最接近的整数是3.解题思想
①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?
②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈r+,∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6,所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,京翰教育1对1家教 http:///
高中数学辅导网 http:// 故12y=1z-1x.解法二3x=4y=6z=m,则有3=m1x①,4=m1y②,6=m1z③,③÷①,得m1z-1x=63=2=m12y.∴1z-1x=12y.9
已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab? 解答logma+b3=logm(a+b3)212=
解题技巧
①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.∵a2+b2=7ab,∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb), 即logma+b3=12(logma+logmb).思维拓展发散
数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数n=a×10n.其中n>0,1≤a
解析由已知,对n=a×10n取常用对数得,lgn=n+lga.真数与对数有何联系? 解答lgn=lg(a×10n)=n+lga.n∈z,1≤a
∴lga∈〔0,1).我们把整数n叫做n的常用对数的首数,把lga叫做n的常用对数的尾数,它是正的纯小数或0.小结:①lgn的首数就是n中10n的指数,尾数就是lga,0≤lga
③当n≥1时,lgn的首数n比它的整数位数少1,当n∈(0,1)时,lgn的首数n是负整数,|n|-1与n的小数点后第一个不是0的有效数字前的零的个数相同.师生互动
什么叫做科学记数法?
n>0,lgn的首数和尾数与a×10n有什么联系?
有效数字相同的不同正数其常用对数的什么相同?什么不同?
若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.京翰教育1对1家教 http:///
高中数学辅导网 http:// 解析①lg0.203 4=1308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).又lg1x=-lgx=-(n+lga),∴(n-9)+(lga+0380 4)=-n-lga,其中n-9是首数,lga+0380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:
n-9=-(n+1)
lga+0.380 4=1-lgan=4, lga=0.308 3.∴lgx=4+0.308 3=4.308 3,∵lg0.203 4=1.308 3,∴x=2.034×104.∴lg1x=-(4+0.308 3)=5.691 7.解题规律
把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3 计算:
(1)log2-3(2+3)+log6(2+3+2-3);(2)2lg(lga100)2+lg(lga).解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?(2)中分母已无法化简,分子能化简吗?
解题方法
认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2 =-1+12log6(4+22+3·2-3)=-1+12log66
=-12.(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.4
已知log2x=log3y=log5z
解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.解答设log2x=log3y=log5z=m
x=2m,y=3m,z=5m.x=(2)m,3y=(33)m,5z=(55)m.下面只需比较2与33,55的大小:
(2)6=23=8,(33)6=32=9,所以255.∴55
图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1
京翰教育1对1家教 http:///
高中数学辅导网 http://
解题规律
①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较
①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m
潜能挑战测试
1(1)将下列指数式化为对数式: ①73=343;②14-2=16;③e-5=m.(2)将下列对数式化为指数式:
①log128=-3;②lg10000=4;③ln3.5=p.2计算:
(1)24+log23;(2)2723-log32;(3)2513log527+2log52.3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;(2)若lg3.127=a,求lg0.031 27.4已知a≠0,则下列各式中与log2a2总相等的是()a若logx+1(x+1)=1 ,则x的取值范围是()
a已知ab=m(a>0,b>0,m≠1),且logmb=x,则logma的值为()a若log63=0.673 1,log6x=-0.326 9, 则x为()a若log5〔log3(log2x)〕=0,则x=.98log87·log76·log65=.10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x
1、x2,那么x1·x2的值为.
11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.h1→h2→h3→h4→h5→h6这条生物链中(hn表示第n个营养级,n=1,2,3,4,5,6).已知对h1输入了106千焦的能量,问第几个营养级能获得100千焦的能量? 12已知x,y,z∈r+且3x=4y=6z,比较3x,4y,6z的大小.13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1).15设集合m={x|lg〔ax2-2(a+1)x-1〕>0},若m≠,m{x|x
16在张江高科技园区的上海超级计算中心内,被称为“神威ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为n=,若已知lg3.840=0.584 3,则lgn=.17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48)
京翰教育1对1家教 http:///
高中数学辅导网 http:// 18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.名师助你成长
1.(1)①log7343=3.②log1416=-2.③lnm=-5.(2)①12-3=8.②104=10 000.③ep=3.5.2.(1)48点拨:先应用积的乘方,再用对数恒等式.(2)98点拨:应用商的乘方和对数恒等式.(3)144点拨:应用对数运算性质和积的乘方.3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2).(2)lg0.031 27=lg(3.127×10-2)=-2+lg3.127=-2+a
4.c点拨:a≠0,a可能是负数,应用对数运算性质要注意对数都有意义.5.b点拨:底x+1>0且x+1≠1;真数x+1>0.6.a点拨:对ab=m取以m为底的对数.7.c点拨:注意0.673 1+0.326 9=1,log61x=0.326 9,所以log63+log61x=log63x=1.∴3x=6, x=12.8.x=8点拨:3(log2x)=1, log2x=3, x=23.9.5点拨:log87·log76·log65=log85, 8log85=5.10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13.11.设第n个营养级能获得100千焦的能量,依题意:106·10100n-1=100,化简得:107-n=102,利用同底幂相等,得7-n=2, 或者两边取常用对数也得7-n=2.∴n=5,即第5个营养级能获能量100千焦.12设3x=4y=6z=k,因为x,y,z∈r+,所以k>1.取以k为底的对数,得:
x=1logk3,y=1logk4,z=1logk6.∴3x=3logk3=113logk3=1logk33, 同理得:4y=1logk44,6z=1logk66.而33=1281,44=1264,66=1236, ∴logk33>logk44>logk66.又k>1,33>44>66>1,∴logk33>logk44>logk66>0,∴3x
14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25.
京翰教育1对1家教 http:///
高中数学辅导网 http:// ∴log25=a-11-b(b≠1).同理得log25=c-11-d(d≠1).即b≠1,d≠1时,a-11-b=c-11-d.∴(a-1)(1-d)=(c-1)(1-b), ∴(a-1)(d-1)=(b-1)(c-1).当b=1,c=1时显然成立.15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则
ax2-2(a+1)x-1=10t(t>0).∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.①当a=0时,解集{x|x
∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1
②当a>0时,m={x|xx2},显然不是{x|x
③当a
a
δ=4(a+1)2+8a>0,x1+x2=2(a+1)a
x1·x2=-2a>0.解得3-2
(1-10%)x=40%,两边取常用对数,得:
x·lg(1-10%)=lg40%,即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10.所以经过10年成本降低为原来的40%.18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.104x.京翰教育1对1家教 http:///
2.5 指数(第二课时-分指数1)
教学目的:
1.理解分数指数幂的概念,掌握有理指数幂的运算性质.2.会对根式、分数指数幂进行互化.教学重点:分数指数幂的概念与运算性质.教学难点:对分数指数幂概念的理解.教学过程:
一、复习引入:
1.整数指数幂的运算性质:
amanamn(m,nz)(am)namn(m,nz)
(ab)nanbn(nz)2.根式的运算性质:
①当n为任意正整数时,(na)n=a.a(a0)②当n为奇数时,a=a;当n为偶数时,a=|a|=.a(a0)nnnn⑶根式的基本性质:ampnam,(a0).3.引例:当a>0时 ①aaa ②aaa ③aa ④aa
二、讲解新课:
1.正数的正分数指数幂的意义 nam(a>0,m,n∈n*,且n>1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互2.规定:(1)amn1mn(a>0,m,n∈n*,且n>1)a(2)0的正分数指数幂等于0.(3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a>0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.3.有理指数幂的运算性质: arasars(r,sq)(ar)sars(r,sq)(ab)rarbr(rq)说明:若a>0,p是一个无理数,则ap表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略.
三、讲解例题:
13164例1求值:8,100,(),().48123123例2用分数指数幂的形式表示下列各式:
a2a,a33a2,aa(式中a>0)例3计算下列各式(式中字母都是正数)
(1)(2ab)(6ab)(3ab);(2)(mn).***56
分析:(1)题可以仿照单项式乘除法进行,首先是系数相乘除,然后是同底数幂相乘除,并且要注意符号。
(2)题按积的乘方计算,而按幂的乘方计算,等熟练后可简化计算步骤。
例4计算下列各式:
(1)a2aa32(a0);
(2)(325125)45 分析:(1)题把根式化成分数指数幂的形式,再计算。
(2)题按多项式除以单项式的法则处理,并把根式化成分数指数幂的形式
再计算。
四、练习:课本p14练习
五、作业:
1.课本p75习题2.5 2.(2)(4)(6),3.(2)(4),4.(2)(4)(6)
2.9 函数应用举例(第二课时)
教学目的:
1.使学生适应各学科的横向联系.2.能够建立一些物理问题的数学模型.3.培养学生分析问题、解决问题的能力.教学重点:数学建模的方法
教学难点:如何把实际问题抽象为数学问题.教学过程:
一、例题
例1(课本第86页 例2)设海拔 x m处的大气压强是 y pa,y与 x 之间的函数关系式是 ycekx,其中 c,k为常量,已知某地某天在海平面的大气压为1.01105pa,1000 m高空的大气压为0.90105pa,求:600 m高空的大气压强。(结果保留3个有效数字)
解:将 x = 0 , y =1.01105;x = 1000 , y =0.90105,代入 ycekx得:
(1)1.01105cek0c1.01105 5k100051000k(2)0.9010ce0.9010ce 将(1)代入(2)得:
0.901051.01105e1000kk10.90ln 10001.014 计算得:k1.15104 ∴y1.01105e1.1510
将 x = 600 代入, 得:y1.01105e1.151044600
计算得:y1.01105e1.1510=0.943×105(pa)答:在600 m高空的大气压约为0.943×105 pa.说明:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知自变量的值,求对应的函数值的数学问题;(4)此题要求学生能借助计算器进行比较复杂的运算.例2在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,„„, an共n个数据,我们规定所测量的物理量的“最佳近似值”a是这样一个量:与其他近似值比较a与各数据差的平方和最小.依次规定,从a1,a2,„„, an推出的a=________.(1994年全国高考试题)分析:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化为函数求最值问题.解:由题意可知,所求a应使y=(a-a1)2+(a-a2)2+„+(a-an)2 最小 由于y=na2-2(a1+a2+„+an)a+(a12+a22+„+an2)若把a看作自变量,则y是关于a的二次函数,于是问题转化为求二次函数的最小值.因为n>0,二次函数f(a)图象开口方向向上.1当a=(a1+a2+„+an),y有最小值.n1所以a=(a1+a2+„+an)即为所求.n说明:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即
y=(a-a1)2+(a-a2)2+„+(a-an)2,然后运用函数的思想、方法去解决问题,解题关键是将函数式化成以a为自变量的二次函数形式,这是函数思想在解决实际问题中的应用.例3某种放射性元素的原子数n随时间t的变化规律是n=n0et,其中n0,λ是正的常数.(1)说明函数是增函数还是减函数;(2)把t表示成原子数n的函数;(3)求n当n=0时,t的值.2解:(1)由于n0>0,λ>0,函数n=n0et是属于指数函数y=ex类型的,所以它是减函数,即原子数n的值随时间t的增大而减少(2)将n=n0et写成et=
n n0根据对数的定义有-λt=ln所以t=-1n n01nn11(3)把n=0代入t=(lnn0-lnn)得t=(lnn0-ln0)2211=(lnn0-lnn0+ln2)= ln2.
二、练习:
1.如图,已知⊙o的半径为r,由直径ab的端点b作圆的切线,从圆周上任一点p引该切线的垂线,垂足为m,连ap设ap=x ⑴写出ap+2pm关于x的函数关系式 ⑵求此函数的最值 解:⑴过p作pdab于d,连pb 设ad=a则x22ra
x2x2a pm2r
2r2r(lnn-lnn0)=(lnn0-lnn)
x2∴f(x)ap2pmx4r(0x2r)
r1r17r(x)2 r2417r当x时f(x)maxr
42⑵f(x) p d c b ado a 当x2r时f(x)min2r
2.距离船只a的正北方向100海里处有一船只b,以每小时20海里的速度,沿北偏西60角的方向行驶,a船只以每小时15海里的速度向正北方向行驶,两船同时出发,问几小时后两船相 距最近?
解:设t小时后a行驶到点c,b行驶到点d,则bd=20 bc=100-15t 过d作debc于e de=bdsin60=103t be=bdcos60=10t ∴ec=bc+be=100-5t cd=de2ce2∴t=103t21005t=325t21000t10000
220203时cd最小,最小值为200,即两船行驶小时相距最近。
1313133.一根均匀的轻质弹簧,已知在600n的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在100n的拉力作用下,长度为0.55m,在300n拉力作用下长度为0.65,那么弹簧在不受拉力作用时,其自然长度是多少? 解:设拉力是 x n(0≤x≤600)时,弹簧的长度为 y m
0.55100kbk0.0005 设:y = k x + b 由题设: 0.65300kbb0.50 ∴所求函数关系是:y = 0.0005 x + 0.50 ∴当 x = 0时,y = 0.50 , 即不受拉力作用时,弹簧自然长度为 0.50 m。
三、作业:课本p89习题2.9 4,5,6
2.7(第二课时,对数的运算性质)教学目的:
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程; 2.能较熟练地运用法则解决问题; 教学重点:对数运算性质
教学难点:对数运算性质的证明方法.教学过程:
一、复习引入:
1.对数的定义 loganb 其中 a (0,1)(1,)与 n(0,)。2.指数式与对数式的互化
3.重要公式:
⑴负数与零没有对数; ⑵loga10,logaa1 ⑶对数恒等式alogann
amanamn(m,nr)4.指数运算法则(am)namn(m,nr)
(ab)nanbn(nr)
二、新授内容:
1.积、商、幂的对数运算法则:
如果 a > 0,a 1,m > 0,n > 0 有: loga(mn)logamlogan(1)mlogalogamlogan(2)
nlogamnnlogam(nr)(3)运算法则推导 用定义法:运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式。(推导过程略)注意事项: 1语言表达:“积的对数 = 对数的和”„„(简易表达——记忆用)2注意有时必须逆向运算:如 log105log102log10101 3注意定义域: log2(3)(5)log2(3)log2(5)是不成立的log10(10)22log10(10)是不成立的 4当心记忆错误:loga(mn)logamlogan
loga(mn)logamlogan 2.常用对数的首数和尾数(大纲未要求,只用实例介绍)
科学记数法:把一个正数写成10的整数次幂乘一位小数的形式,即
若n>0,记n10nm,(nz,1m10),则lgn=n+lgm,其中nz,0lm1;这就是说,任何一个正数的常用对数都可以写成一个整数加上一个零或正纯小数的形式.我们称这个整数为该对数的首数,这个零或正纯小数为该对数的尾数.如:已知lg1.280.1070,则
三、例题:
例1 计算
(1)log525,(2)log0.41,(3)log2(47×25),(4)lg5100 例2 用logax,logay,logaz表示下列各式:
lg128lg(1021.28)20.10702.1070;lg0.00128lg(101.28)30.10703.10703
xy(1)loga;z例3计算:(1)lg14-2lg
(2)logax2y3z
7lg243lg27lg83lg10+lg7-lg18(2)(3)3lg9lg1.2(1)分别用对数运算性质和逆用运算性质两种方法运算(答案:0).lg243lg355lg35(2)2lg92lg32lg3lg27lg83lg10lg(3)lg23lg(10)322lg1.2lg10
四、课堂练习:课本p78 1,3
1.用lgx,lgy,lgz表示下列各式: (3)1323123(lg32lg21)32
lg32lg212xy2xy3x(1)lg(xyz);(2)lg;(3)lg;(4)lg2
zyzz
2.求下列各式的值:
(1)log26-log23(2)lg5+lg2
1(4)log35-log315
3五、作业:课本p79习题2.7 3.(1)(3)(5),4.(1)(5)(6),5.(3)(5)(3)log53+log5(6),6.(3)(4)
最新高一数学函数教案全册 高一数学函数教案 详案(5篇)
文件夹