最新初中数学几何图形教案(四篇)
文件格式:DOCX
时间:2023-03-01 00:00:00    小编:懂壹点人情世故

最新初中数学几何图形教案(四篇)

小编:懂壹点人情世故

作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

初中数学几何图形教案篇一

1。同角(或等角)的余角相等。

3。对顶角相等。

5。三角形的一个外角等于和它不相邻的两个内角之和。

6。在同一平面内垂直于同一条直线的两条直线是平行线。

7。同位角相等,两直线平行。

12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。

16。直角三角形中,斜边上的中线等于斜边的一半。

19。在角平分线上的点到这个角的两边距离相等。及其逆定理。

21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。

22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。

24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。

25。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。

27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。

34。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。

36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

46。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。

37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。

47。切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

48。切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。

49。切线长定理从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。

50。弦切角定理弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。

51。相交弦定理;切割线定理 ; 割线定理

初中数学几何图形教案篇二

初中几何教案

第24课时:和圆有关的比例线段(二)

教学目标:

1、使学生理解切割线定理及其推论;

2、使学生初步学会运用切割线定理及其推论.

3、通过对切割线定理及推论的证明,培养学生从几何图形归纳出几何性质的能力;

4、通过对切割线定理及其推论的初步运用,培养学生的分析问题能力.在上节我们曾经学到相交弦定理及其推论,它反映了圆中两弦的数量关系;我们可以用同样的方法来研究圆的一条切线和一条割线的数量关系. 教学重点:

使学生理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

教学难点:

学生不能准确叙述切割线定理及其推论,针对具体图形学生很容易得到数量关系,但把它用语言表达,学生感到困难. 教学过程:

一、新课引入:

我们已经学过相交弦定理及其推论,现在我们用同样的数学思想方法来研究圆的另外的比例线段.

二、新课讲解:

现在请同学们在练习本上画⊙o,在⊙o外一点p引⊙o的切线pt,切点为t,割线pba,以点p、b、a、t为顶点作三角形,可以作几个三角形呢?它们中是否存在着相似三角形?如果存在,你得到了怎样的比例线段?可转化成怎样的积式?现在请同学们打开练习本,按要求作⊙o的切线pt和割线pba,后研究讨论一下.

学生动手画图,完成证明,教师巡视,当所有学生都得到数量关系式时,教师打开计算机或幻灯机用动画演示.

最终教师指导学生把数量关系转成语言叙述,完成切割线定理及其推论.

1.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

2关系式:pt=pa·pb

2.切割线定理推论:从圆外一点引圆的两条割线.这一点到每条割线与圆的交点的两条线段长的积相等.

数量关系式:pa·pb=pc·pb.

切割线定理及其推论也是圆中的比例线段,在今后的学习中有着重要的意义,务必使学生清楚,真正弄懂切割线定理的数量关系后,再把握定理叙述中的“从”、“引”、“切线长”、“两条线段长”等关键字样,定理叙述并不困难.

练习一,p.128中

1、选择题:如图7-86,⊙o的两条弦ab、cd相交于点e,ac和db的延长线交于点p,下列结论成立的是 [ ]

a.pc·ca=pb·bd b.ce·ae=be·ed c.ce·cd=be·ba d.pb·pd=pc·pa 答案:(d),直接运用和圆有关的比例线段进行选择.

练习二,p.128中

2、如图7-87,已知:rt△abc的两条直角边ac、bc的长分别为3cm、4cm,以ac为直径作圆与斜边ab交于点d,求bd的长.

此题已知rt△abc中的边ac、bc,则ab可知.容易证出bc切⊙o于c,于是产生切割线定理,bd可求.

练习三,p.128中3.如图7-88,线段ab和⊙o交于c、d,ac=bd,ae、bf分别切⊙o于e、f.

求证:ae=bf.

本题可直接运用切割线定理.

例3 p.127,如图7-89,已知:⊙o的割线pab交⊙o于点a和b,pa=6cm,ab=8cm,po=10.9cm.

求⊙o的半径.

此题要通过计算得到⊙o的半径,必须使半径进入一个数量关系式,观察图形,可知只要延长po与圆交于另一点,则可产生切割线定理的推论,而其中一条割线恰好经过圆心,在线段中自然可以参与进半径,从而由等式中求出半径.必须使学生清楚这种数学思想方法,结合图形,正确使用和圆有关的比例线段,则关系式中必有两条线段是半径的代数式构成,只要解关于半径的一元二次方程即可.

解:设⊙o的半径为r,po和它的长延长线交⊙o于c、d.

(10.9-r)(10.9+r)=6×14 r=5.9(取正数解)答:⊙o的半径为5.9.

三、课堂小结:

为培养学生阅读教材的习惯,让学生看教材p.127—p.128.总结出本课主要内容:

1.切割线定理及其推论:它是圆的重要比例线段,它反映的是圆的切线和割线所产生的数量关系.需要指出的是,只有从圆外一点,才可能产生切割线定理或推论.切割线定理是指一条切线和一条割线;推论是指两条割线,只有使学生弄清前提,才能正确运用定理.

2.通过对例3的分析,我们应该掌握这类问题的思想方法,掌握规律、运用规律.

四、布置作业:

1.教材 p.132中10;2.p.132中11.

初中数学几何图形教案篇三

初二数学竞赛基本几何题

1、如图1,在△abc中,ad⊥bc 于d,ab+bd=cd。证明∠b=2∠c。

ac

db

2、如图2,在△abc中,ab=ac。d,e分别是bc,ac 上的点。问∠bad与∠cde满足什么条件时,ad=ae。

abdec

3、如图3,六边形abcdef 中,∠a=∠b=∠c=∠d=∠e=∠f,且ab+bc=11,fa-cd=3。求bc+de 的值。

faedb

4.如图4,在凸四边形abcd中,∠abc=300,∠adc=600 ,ad=dc。证明bd2 =ab2 +bc

2ac

dcb

5、如图5,p是△abc边bc上一点,pc=2pb。已知∠abc=450,∠apc=600。求∠acb 的度数。

ab

pc

6、如图6中,在△abc中,bc=a,ac=b,以ab为边向外作等边三角形△abd。问∠acb为多少度时,点c与点d的距离最大?

cabd

7、如图7,在等腰△abc中,ab=ac,延长ab到d,延长ca到e,连de,有ad=bc=ce=de。证明:∠bac=100°。

eabd第七题c

8、如图8,在△abc中,ad是边bc上的中线,ab=√2,ad=√6,ac=√26。求∠abc的度数。

ac

b

d

9、如图9,在△abc的外面作正方形abef和acgh,ad⊥bc于d。延长da 交fh于m。证明:fm=hm。

10、如图10,p,q,r分别是等边△abc三条边的中点。m是bc上一点。以mp为一边在bc同侧作等边△pms。连sq。证明 rm=

rmc

11、如图11,在四边形abcd 中,ab=a,ad=b,bc=cd.对角线ac平分∠bad。问a与b符合什么条件时,有∠d+∠b=180°

dcab

12、如图12,在等腰△abc中,ad是边bc 上的中线,e是△adb内任一点,连 ae,be,ce。证明:∠aeb>∠aec。

aeb

13、如图,在凸四边形abcd中,ab=ad,∠bad=60°,dc

∠bcd=120°证明:bc+cd=ac。

abcd

14、如图14,在△abc中,ad是边bc上的中线,点m在ab上,点n在ac上。已知∠mdn=90°,bm2+cn2=dm2+dn2。证明:ad2= 1/4(ab2+ac2)

anmbdc

15、如图,在△abc中,∠a=90°ad垂直bc交于d,∠bca的平分线交ad于f,交ab于e,fg∥bc,交ab于g,ae=4,ab=14,求bg的长。

cdfa

16.如图rt△abc中,∠a=90°,ab=ac,bd平分∠abc交ac于d,作ce垂直bd交bd延长线于e,过a作ah⊥bc交bd于m,试猜想bm与ce的大小关系,并证明你的结论。

egb

cehdmab

初中数学几何图形教案篇四

初中数学几何证明教案模板范文学生推理能力的培养,是初中数学教学的一项重要内容。而几何证明题过程的书写正体现了学生推理能力的水平。

证明是指从命题的题设出发,经过逐步推理,来判断命题的结论是否正确的过程。现阶段初中生的数学几何证明题的书写情况不容乐观。

下面小编为大家带来初中数学几何证明教案模板范文,仅供参考,希望能够帮到大家。初中数学几何证明教案模板范文

一、彻底搞清定义、定理、公理的真正含义

要想让学生写出思路清晰、层次分明的几何证明题的书写过程。首先最关键的一步就是要让学生彻底分清定义、定理、公理的题设和结论,真正理解其真实含义。只有这样,学生才能在以后的证明过程中,正确地利用它来证明相关结论。反之,如果你对定理的内容都没有真正理解,而是含糊其词,是是而非,或者本身就不知道有这样一个定理,那么你在以后的证明过程中,就不能正确地应用这个定理或者就不知道应用这个定理,整个证明过程就会陷入僵局。同时,我们还要让学生把握清楚定理的内涵,不能对定理的理解有模棱两可、含糊其词之感。例如,在学习等腰三角形的“三线合一”这一定理时,有些同学就理解不清,没有真正掌握其含义,甚至自己都感到有些困惑,致使在应用时出现一些小错误。我们都知道这个定理的正确用法是,在知道一个三角形是等腰三角形的大前提下,其中“顶角的平分线”、“底边上的高”、“底边上的中线”三者知道一个,就可以得到另外两个结论。而有些没有真正理解其含义的同学就这样写道:(如图)

在△abc中

∵ab=ac,ad⊥bc,bd=cd ∴ad平分∠bac

显然,这是不恰当的。原因就在于没有真正理解等腰三角形“三线合一”这一定理的内涵,应该去掉“的任一个。

二、加强三种几何语言的教学,特别是符号语言

几何语言包括三种不同形式的语言,即文字语言、图形语言、符号语言。对定理、公理的教学,我们老师不仅要让学生掌握定理对应的三种语言,还要培养学生对三种语言的转换能力。

由于三种语言

ad⊥bc”和“bd=cd”中的不同特点,在教学中各自发挥的作用也不相同。在三种语言中,符号语言是几何初学者最难掌握的一种,也是逻辑推理必备的能力基础,因为考试中的证明题要用符号语言来体现。

我们老师在教学中如何让学生掌握好符号语言呢?在教学某一定理时,首先要让学生在理解的基础上,结合图形能用自己的语言进行描述再引导学生如何用符号语言进行“翻译”。的点到角的两边的距离相等”这一定理时。

(即文字语言),然后

例如在教学“角平分线上首先,我们老师要引导学生用什么样的方法证明这一定理,然后引导学生用自己的话表述这一性质,最后训练学生如何用符号来描述这一定理。这一定理的题设中,关键的两点即“角平分线”和“角平分线上的点到角的两边的距离”,如何用符号表示呢呢?(如图),?结论中的“相等”,又如何用符号表示

题设中的“两点”可以这样用符号表示:∠1=∠2,cd⊥ao,ce⊥bo,结论中的“相等”可表示为:cd=ce

如果我们以后用到这一性质时,就可以这样写了:∵∠1=∠2,cd⊥ao,ce⊥bo∴cd=ce

三、理清思路,做到层次分明

我们老师在批改学生的证明题时,常常会发现这样的现象:为了证明某一结论,假设需要通过两步“同等身份”的推理,才能得出最后的结论,个别学生在证明时,往往两步的推理互相穿插,第一步证明的推理在第二步中有出现,第二步的推理在第一步中也有体现。也就是说,思路不清,条理不清晰。出现这种现象的原因还是在书写过程之前,思路不清、层次不分明。针对这种现象,我们老师要帮助学生细细分析清楚后,再让学生书写过程。例如有这样一道证明题:(如图)

已知:如图,矩形abcd的对角线ac、bd相交于点o,be‖ac,ce‖bd。

求证:四边形obec是菱形。

针对这一题目,引导学生通过分析后,发现这个题目只要证明“两大块”就行了,即证“ob=oc”和“四边形

obec为平行四边形”,然后再引导学生这“两大块”又分别怎样用符号语言表述就可以了。当然,这“两大块”的证明不分先后。通过这样的分析后,学生在书写时就不会出现证明“ob=oc”时出现“be‖ac”这样的“不速之客”了。

四、掌握几何证明题常用的分析方法

几何证明题常用的分析方法有综合法和分析法,另外还有一种就是分析法和综合法的结合使用。那么我们在证明某一结论时,到底用上述三种方法的哪一种呢?这要根据具体的问题,具体的情况进行决定。有时一个待证的结论分析法也可以,综合法也可以,都比较容易找到解决问题的思路,但有时一个待证的结论,这两种方法都不奏效,都不容易找到解决问题的方法,这时我们不妨把这两种方法结合起来使用,或许能找到“突破点”。因此,我们老师要让学生在解决证明题的过程中,自己要注意总结和反思,灵活掌握上述的三种方法。只有这样才能在寻求解决问题方案的过程中游刃有余。

五、多鼓励学生

刚刚学习几何证明题书写的学生,在书写的过程中肯定要或多或少地出现这样或那样的错误。我们老师在对待这一问题时,不要急躁,要耐心地对学生进行讲解和引导,多鼓励、多表扬他们。不理想的推理步骤要不断改进,同时引导学生自己多领悟多反思一下。这样,学生就不会失去这方面的信心,他们会做得越来越好。

总之,对学生几何证明题书写的教学,我们老师要有足够的耐心,采取不同的教学思路和方法,引导和鼓励学生循序渐进地掌握正确书写的方法和技巧。只有这样,学生才能书写出思路清晰、层次分明的几何证明题书写过程。[初中数学几何证明教案模板范文]

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制