2025年数学八年级下册分式培优题(四篇)
文件格式:DOCX
时间:2023-03-01 00:00:00    小编:轻创业玩家

2025年数学八年级下册分式培优题(四篇)

小编:轻创业玩家

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

数学八年级下册分式培优题篇一

《 分式的意义》说课稿

一、教材分析

1.地位和作用

分式的意义是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。

2.学情分析

我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。

3.教学目标(1)知识目标:理解分式的概念,并能判断一个有理式是不是分式。

(2)技能目标:掌握如果分式的分母的值为零,则分式没有意义;如果分式的分子为零,而分母不为零时,分式的值为零,会推断分式的分母中所含字母的取值范围。

(3)能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。

(4)情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。

4.教学重点与难点

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

(1)重点:分式的意义:分式与除法的关系;

(2)难点:掌握如果分式的分母的值为零,则分式没有意义;如果分式的分子为零,而分母不为零时,分式的值为零。

二、教学方法与学法本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。

三、教学过程

本节课的教学我主要分下面这样几个环节

1.设问激疑,以旧探新,类比联想,形成概念

教师先问学生两个问题,帮助学生回忆分数。

思考:请各位同学将下列各题用一个恰当的分数来表示:

1.一段绳子长3米,把它平均分成4份,则每份长是多少?

2.甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?

然后教师再请学生看以下两个问题。

思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?

2.甲地到乙地的路程是180千米,一辆汽车行驶 小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?

学生通过运算、比较,可以发现、是一种新的代数式。教师介绍这种新的代数式,我们称它为分式,从而引出课题分式的意义。

接着,教师在此基础上引导学生类比联想,给出分式的概念。即

两个数,相除可以用 或 来表示,如果两个代数式a,b相除我们也可以用ab 或 来表示。

分式的概念:两个整式a,b相除时,可以表示为的形式,如果分母b中含有字母,那么 叫做分式。如:分母中都含有字母,都是分式。

(这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)在教师与学生共同得到分式的概念后,紧接着教师给出:

例1:现有以下各式:2,,,,请同学们任取两个进行组合,使组合后的代数式为分式。

在这里我们可以发现答案并不唯一,通过对分式的概念的理解,让学生亲自动手,亲身体验,展开想象的翅膀,组合成的代数式将一个个的呈现在我们眼前,激发学生兴趣,调动学生学习的主动性。然后教师通过学生所给出的答案加以分析,指出类似 这种形式的,虽然也有分母,但分母中不含有字母,所以不是分式,而是整式。指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出整式和分式统称为有理式。

根据分式的概念,我们还可以看到分数线具有双重意义:(1)表示括号;(2)表示除号。所以为了让学生体会到这一点,教师给出:

例2:用分式表示下列各式:

(1);(2);(3);(4);

2.观察感知,启发引导,指导运用,巩固概念

在掌握了分式的概念以后,教师通过要分数有意义,只要使分母不为零让学生很自然得过渡到要分式有意义,也只要使分母不为零即可的思想。

教师抓住这一契机,给出:

例3:当 取什么值时,分式: 有意义?

学生根据之前的结论,得出只要分母,即 时,这个分式有意义。

教师顺水推舟,再给出以下分式,让学生讨论,这时当x取什么值时,分式有意义?

(1);(2);(3);(4)

讲到这里,教师又乘胜追击,问学生:

例4:那么以上各分式,当 取什么值时,分式无意义?

那么我们说只要分母为零时,这个分式就无意义。请学生给出每一题的正确结论。

3、变式训练,讨论辨析,揭示内涵,深化概念

在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,教师将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。

教师问学生:

例5:同样的,以上各分式,当 取什么值时,分式的值为零?

由于学生对新概念的理解在本质方面还是肤浅的,很多学生只会考虑满足分子为零即可,所以教师给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(3)(4)两个题发现问题并不是那么简单,找出了症结。这样教师就能及时得对症下药,指出分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:

(1)分子的值为零;(2)同时分母的值不等于零。

4.反思小结,自主评价,培养能力,激励奋进

一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?

教师整理学生的发言,归纳小结:

(1)整式和分式统称为有理式

(2)分式的概念:两个整式a,b相除时,可以表示为 的形式,如果分母b中含有字母,那么叫做分式。

(3)要分式有意义,也只要使分母不为零

(4)当分母为零时,分式就无意义

(5)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的值不等于零。

(6)是圆周率,它代表的是一个常数。

(7)在开放题中,强调根据整式、分式的定义进行编制。

5.分层作业

(1)练习册15.1

(2)取何值时,分式 的值为负数?

四.评价分析

1.学生在学习新的数学概念时,新的信息对学生来讲基本上是陌生的,零碎的和彼此孤立的,在课堂教学中,教师的任务就是为学生的发现、创造提供自由广阔的天地,就是在于引导学生探索获得知识、技能的途径和方法。因此,利用旧知探索新知,逐步深入,引发学生思维冲突,将学生带入发现概念的最近发展区。

2.在教学过程中,很多学生误认为由旧知识获得新知识后,对新知识的理解就已经到位了,这时需要教师引导学生探求新旧知识间的深层联系和实质区别,去揭示这种内在的或隐藏的联系与区别,纠正其对概念的表面性和片面性的理解,在头脑中获得新的痕迹。

3.小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。同时,体现在学习策略的选择、实施、调整等方面,从整体上也提高了学生的认知水平。学生通过反思,不仅可以梳理在学习过程中对概念的理解程度,还可以评价自己在认知加工过程中所闪烁出的思维火花,领悟其中的数学思想和方法,对提高数学思维能力起到了积极的作用。

数学八年级下册分式培优题篇二

《分式》训练题一.解答题(共10小题)1.化简:(1)

(2)

(3)

(4)

2.计算; ①

3.先化简:;若结果等于,求出相应x的值.

4.如果,试求k的值.

5.(2011•咸宁)解方程

6.(2010•岳阳)解方程:

7.(2010•苏州)解方程:

8.(2011•苏州)已知|a﹣1|+

9.(2009•宁波)如图,点a,b在数轴上,它们所对应的数分别是﹣4,求x的值.

10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人?,且点a、b到原点的距离相等,=0,求方裎+bx=1的解.

. ﹣

=1.

©2010-2012 菁优网

答案与评分标准

一.解答题(共10小题)1.化简:(1)

(2)

(3)

(4).

考点:分式的混合运算;约分;通分;最简分式;最简公分母;分式的乘除法;分式的加减法。专题:计算题。分析:(1)变形后根据同分母的分式相加减法则,分母不变,分子相加减,最后化成最简分式即可;(2)根据乘法的分配律展开后,先算乘法,再合并同类项即可;

(3)先根据异分母的分式相加减法则算括号里面的,再把除法变成乘法,进行约分即可;(4)先把除法变成乘法,进行约分,再进行加法运算即可. 解答:解:(1)原式=﹣

=

=

=

=﹣ ;

(2)原式=3(x+2)﹣=3x+6﹣x =2x+6;

(3)原式=[== ; ••(x+2)

]•

©2010-2012 菁优网

(4)原式=•

+

===+

=1.

点评:本题主要考查对分式的混合运算,约分,通分,最简分母,分式的加、减、乘、除运算等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.

2.计算; ①②

考点:分式的混合运算。专题:计算题。

分析:①首先进行乘方计算,然后把除法转化为乘法计算,最后进行乘法运算即可; ②运用乘法的分配律和完全平方公式先去括号,再算除法. 解答:解:①

=•(﹣)

==﹣②•(﹣;)

2=[﹣x﹣1+1﹣x﹣1+x+2]÷(x﹣1)

2=(x﹣1)÷(x﹣1)=x﹣1.

点评:考查了分式的乘除法,解决乘法、除法、乘方的混合运算,容易出现的是符号的错误,在计算过程中要首先确定符号.同时考查了分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.

3.先化简:

;若结果等于,求出相应x的值.

考点:分式的混合运算;解分式方程。专题:计算题。

分析:首先将所给的式子化简,然后根据代数式的结果列出关于x的方程,求出x的值.

©2010-2012 菁优网

解答:解:原式=

2=;

由 =,得:x=2,解得x=±.

点评:本题考查了实数的运算及分式的化简计算.在分式化简过程中,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.

4.如果,试求k的值.

考点:分式的混合运算。专题:计算题。

分析:根据已知条件得a=(b+c+d)k①,b=(a+c+d)k②,c=(a+b+d)k③,d=(a+b+c)k④,将①②③④相加,分a+b+c+d=0与不等于0两种情况讨论,所以k有两个解. 解答:解:∵,∴a=(b+c+d)k,① b=(a+c+d)k,② c=(a+b+d)k,③ d=(a+b+c)k,④

∴①+②+③+④得,a+b+c+d=k(3a+3b+3c+3d),当a+b+c+d=0时,∴b+c+d=﹣a,∵a=(b+c+d)k,∴a=﹣ak ∴k=﹣1,当a+b+c+d≠0时,∴两边同时除以a+b+c+d得,3k=1,∴k=.

故答案为:k=﹣1或.

点评:本题考查了分式的混合运算,以及分式的基本性质,比较简单要熟练掌握.

5.(2011•咸宁)解方程

考点:解分式方程。专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

6.(2010•岳阳)解方程: ﹣=1.

©2010-2012 菁优网

考点:解分式方程。专题:计算题。

分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:去分母,得4﹣x=x﹣2

(4分)解得:x=3

(5分)检验:把x=3代入(x﹣2)=1≠0.

∴x=3是原方程的解.

(6分)点评:本题考查解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

7.(2010•苏州)解方程:

考点:换元法解分式方程;解一元二次方程-因式分解法。专题:换元法。

分析:方程的两个分式具备平方关系,设程.先求t,再求x. 解答:解:令=t,则原方程可化为t﹣t﹣2=0,2=t,则原方程化为t﹣t﹣2=0.用换元法转化为关于t的一元二次方

2解得,t1=2,t2=﹣1,当t=2时,当t=﹣1时,=2,解得x1=﹣1,=﹣1,解得x2=,经检验,x1=﹣1,x2=是原方程的解.

点评:换元法是解分式方程的常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法求解的分式方程的特点,寻找解题技巧.

8.(2011•苏州)已知|a﹣1|+=0,求方裎+bx=1的解.

考点:解分式方程;非负数的性质:绝对值;非负数的性质:算术平方根。专题:综合题;方程思想。

分析:首先根据非负数的性质,可求出a、b的值,然后再代入方程求解即可. 解答:解:∵|a﹣1|+=0,∴a﹣1=0,a=1;b+2=0,b=﹣2. ∴﹣2x=1,得2x+x﹣1=0,解得x1=﹣1,x2=.

经检验:x1=﹣1,x2=是原方程的解. ∴原方程的解为:x1=﹣1,x2=.

点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.同时考查了解分式方程,注意解分式方程一定注意要验根.

2©2010-2012 菁优网

9.(2009•宁波)如图,点a,b在数轴上,它们所对应的数分别是﹣4,求x的值.

考点:解分式方程;绝对值。专题:图表型。

分析:a到原点的距离为|﹣4|=4,那么b到原点的距离为4,就可以转换为分式方程求解. 解答:解:由题意得,解得经检验∴x的值为,是原方程的解,. =|﹣4|,且点a、b到原点的距离相等,点评:(1)到原点的距离实际是绝对值.正数的绝对值是它本身,负数的绝对值是它的相反数;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.

10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人? 考点:分式方程的应用。专题:应用题。

分析:设原计划参加植树的团员有x人,则实际参加植树的团员有1.5x人,人均植树棵树=树﹣实际人均植树棵树=2,列分式方程求解,结果要检验. 解答:解:设原计划参加植树的团员有x人,根据题意,得,用原人均植树棵解这个方程,得x=50,经检验,x=50是原方程的根,答:原计划参加植树的团员有50人.

点评:找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.

©2010-2012 菁优网

数学八年级下册分式培优题篇三

2013八年级数学培优测试题

一、选择题(共8小题,每小题5分,满分40分.)

x2x201.计算,则x的取值范围是()

a.x>2b.x<2c.x≥2d.x≤

22.如图是小王早晨出门散步时,离家的距离(y千米)与时间(x小时)之间的函数

是().bc

3.线段

y

a d

xa(1≤x≤3,),当a的值由-1增加到2时,该线

段运动所经过的平面区域的面积为()

a.6b.8c.

9d.10

11ab4.已知实数a、b满足:ab1且m,n,则m、n1a1b1a1b的关系为()

a.mnb.mnc.mn d.m、n的大小不能确定

5.如图在四边形abcd中,∠dab=∠bcd=90°,ab=ad,若这个四边形的面积是10,则bc+cd等于()

a.4b.c.4d.

6.正三角形abc所在平面内有一点p,使得⊿pab、⊿pbc、⊿pca都是等腰三角形,则这样的p点有()

a.1个b.4个c.7个d.10个

7. 如图,在△abc中,d是bc上的一点,已知ac=5,ad=6,bd=10,cd=5,则△abc的面积是()

(a)30(b)36(c)72(d)12

58.已知x为实数,且3x1+4x+5x1+…+x的值是一个确定的常数,则这个常数是()

a.5b.10c.15d.75

nc

二、填空题(共6小题,每小题5分,满分30分)

9.观察下面一列分式:,是。10.11.已知k=

124816,,4,5,...,根据规律,它的第n项2

3xxxxx

abcabcabc,且n2+16+m6=8n,则关于x

cba的一次函数y=-kx+n-m的图象一定经过第__________象限.

12.如图,直线l上摆放着两块大小相同的直角三角形△abc和△ecd,∠acb=∠dce=90°,且bc=ce=3,ac=cd=4,将△ecd绕点c逆时针旋转到△e1cd1位置,且d1e1∥l,则b、e1两点之间的距离为_13. 如图,若长方形aphm、bnhp、cqhn的面积分别是7、4、6,则△pdn的面积是.

14.一只青蛙从点a(-6,3)出发跳到点b(-2,5),再从点b跳到y轴上的点c,继续从点c跳到x轴上的点d,最后由点d回到点a(青蛙每次所跳的距离不一定相等)。当青蛙四步跳完的路程最短时,直线cd的解析式是.三、解答题(共6题,满分50分)

15.(本题8分)若a+x2=2011,b+x2=2012,c+x2=2013,且abc=24.求

1abc1

1++---的值.

cbcacabab

16.(本题8分)某电器行“家电下乡”指定型号的冰箱彩电的进价和售价如右表所

示: ⑴按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴;农民周大伯到该电器行购买了冰箱一台,彩电两台,可以享受多少元的政府补贴?(2分)⑵为满足农民需求,电器行决定用不超过85000元采购冰箱和彩电共40台,且冰箱的数量不少于彩电数量的.

①请你帮助该电器行设计相应的进货方案;(3分)②哪种进货方案电器行获得的利润最大?(利润=售价-进价)最大利润是多少?(3分)

17.(本题8分)如图,已知 :正△oab的面积为4,双曲线y=经过点b,点p(m,n)(m>0)在双曲线y=上,pc⊥x轴于点c,pd⊥y轴于点d,设矩形ocpd与正△oab不重叠部分的面积为s.

⑴求点b的坐标及k的值; ⑵求m=1和m=3时,s的值.

18.(本题8分)如图,△abc是等边三角形,△bdc是顶角∠bdc=120°的等腰三角形,以d为顶点作一个60°角 ∠mdn,角的两边分别交ab、ac边于m、n两点,连接mn.a 试探究bm、mn、cn之间的数量关系, c

19.(本题8分)若干名游客要乘坐游船,要求每艘游船乘坐的人数相同.如果每艘游船乘坐12人,结果剩下1人未能上船;若有一艘游船空着开走,则所有游客正好能平均分坐到其余游船上.已知每艘游船最多能容纳15人.请你通过计算,说明游客共有多少人?

kx

kx

x

20.(本题10分)点且垂直于x轴的直线与过a点的直线y=2x+b交于点m.(1)试判断△amn的形状,并说明理由;(2)将an所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点d、e.当直线l平移时(包括l与直线an重合),在直线mk上是否存在点p,使得△pde是以de为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点p的坐标;若不存在,请说明理由.

数学八年级下册分式培优题篇四

分式提高训练

1、学完分式运算后,老师出了一道题“化简:

x32x” x2x24(x3)(x2)x2x2x6x2x2822小明的做法是:原式;

x24x4x24x4小亮的做法是:原式(x3)(x2)(2x)x2x62xx24; 小芳的做法是:原式x3x2x31x311. x2(x2)(x2)x2x2x2c.小芳

d.没有正确的 其中正确的是()

a.小明

b.小亮

2、下列四种说法(1)分式的分子、分母都乘以(或除以)a2,分式的值不变;(2)分式

3的值可以等于零;8y(3)方程xx111的解是x1;(4)2的最小值为零;其中正确的说法有()x1x1x1a.1个 b.2 个 c.3 个 d.4 个 2xa1的解是正数,则a的取值范围是()

3、关于x的方程x1a.a>-1 b.a>-1且a≠0

c.a<-1 d.a<-1且a≠-2 4.若解分式方程2xm1x12产生增根,则m的值是()x1xxx

d.1或2 a.1或2 b.1或2 c.1或2 5. 已知115ba,则的值是()ababab1 3a、5

b、7

c、3

d、6.若x取整数,则使分式6x3的值为整数的x值有(). 2x-1 a 3个 b 4个 c 6个 d 8个 7.已知2x3ab,其中a、b为常数,那么a+b的值为()

x2xx1xa、-2

b、2

c、-4

d、4 8.甲、乙两地相距s千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b小时到达乙地,则汽车的速度()

ssavsav2s

b.c.d.abbabab111

29、分式方程去分母时,两边都乘以。x33xx912

10、若方程的解为正数,则a的取值范围是___________.x1xa a.1111.已知:x222axb0 ,则a,b之间的关系式是_____________ xx12.已知223143(yx)的值是______________.,则3x2yyx2x1abbcca(ab)(bc)(ca),则cababc213.若abc0,且

三、计算或化简:

4a4a1x2x1)(1a)(2)1114.(1)(a1 2a1a11xx2x1

15.当a为何值时,16.m为何值时,关于x的方程

17.有160个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作3小时后,乙才开始工作,因此比甲迟20分钟完成任务,已知乙每小时加工零件的个数是甲的3倍,问甲、乙两车间每小时各加工多少零件?

18.解方程:

x1x22xa的解是负数? x2x1(x2)(x1)2mx3会产生增根? x2x4x21111„2 x10(x1)(x2)(x2)(x3)(x9)(x10)八年级数学培优试题----分式1

1、若分式x1,从左到右的变形成立,则x的取值范围是 ; 2x3xx3aa2abb2 ;

2、如果2,那么22bab3、若111ab,则 ; ababba4、不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.32ab2(2)0.1x0.2y(1)20.25x0.03yab3x2

15、如果分式的值为0,求x的值。

x

113a2aba8,b

6、先化简,再求值;2,其中。

29a6abb2

7、已知

8、已知分式

11a2abb4.,求的值. ab2a2b7ab6a18的值是正整数,求整数a的值。2a91x29、已知x3,求4的值。

xxx2

110、已知 abc3a2b3c0,求分式的值。345abc11、先将分式

12、已知x

6x6化简,再讨论x取什么整数时,能使分式的值是正整数。2x2x111113,求分式x22的值,能求出x33,x44的值吗? xxxx213、已知x5x10,求x21的值。2x

1a4a2114、已知a5,求的值。2aa

x2y2z215、已知3x4yz0,2xy8zo,求的值。

xyyz2xz

16、已知

17、已知a,b,c为实数,且

18、由xyz,(a,b,c互不相等),求xyz的值。abbccaab1bc1ac1abc,,,那么的值是多少? ab3bc4ac5abbcca1111111111111,,,你能总结出(n为正整数)的通式吗? 122223623341234,n(n1)1111.x(x1)(x1)(x2)(x2)(x3)(x8)(x9)并试着化简:

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
2025年数学八年级下册分式培优题(四篇) 文件夹
复制