最新数的奇偶性教学设计教学(精选13篇)
文件格式:DOCX
时间:2023-04-03 00:00:00    小编:小卢叔-

最新数的奇偶性教学设计教学(精选13篇)

小编:小卢叔-

通过总结,我们可以从过去的经验中吸取教训,改进自己的不足之处。总结是回顾过去、展望未来的桥梁,我想我们需要运用总结的思维方式做出更好的决策。以下是科学界对于环境保护的研究成果和建议,让我们一起关注环保事业。

数的奇偶性教学设计教学篇一

在小学数学教学过程中,让学生多动手操作,不仅可以让学生主动参与知识的形成过程,促进学生思维的发展,更重要的是以实践为基础,采用直观教学手段,让学生理解所学内容,掌握新知识。这样做,有利于激发学生学习数学的兴趣,使学生变“学会”为“会学”。

例如在教学“数的奇偶性”,我不急于让学生解决问题,而是让学生动手操作,在游戏中做“数学”,用游戏的形式将数学表达出来,并及时给予学生的想法肯定,并引导学生思考别的方法,最终验证这一方法。课堂气氛骤然活跃,问题也在讨论中得到解决。这样通过观察、操作,激起了学生表现自我才能的欲望。另外“学起于思,思源于疑。”学生有疑问才会进一步思考问题,才能有所发现,有所创造。苏霍姆林斯基曾说过“人的心灵深处总有一种把自己当作发现者、研究者、探索者的固有需要。”这种需要在小学生的精神世界中更为重要。

让同学先试着做,教室里可热闹啦!不久,同学都纷纷举手说:“我做出来了”小组汇报的情况有以下几种:

奇数奇数=偶数奇数-奇数=偶数奇数+奇数+……+奇数=奇数个数。

偶数+偶数=偶数偶数-偶数=偶数奇数+奇数+……+奇数=偶数个数。

奇数+偶数=奇数奇数-偶数=奇数偶数+偶数+……+偶数=偶数。

我感到特别欣慰,学生学会自己学习。这样,把大量的活动空间留给学生,使学生成为学习的主人,学生提出自己的观点和看法,利于学生综合运用知识解决实际问题。

数的奇偶性教学设计教学篇二

本节课的教学模式是采用循序渐进,由简单的问题引入,然后在教师的引导下,探索结论,最后,在教师的指导下,对所学的实际结论进行学生的实际应用。

一、这种教学模式的教学程序是:

(一)实际练习引入课题,并能去发现生活中的相关信息,引起学生的兴趣。

(二)看图,具体引入函数进行观察探索,包括图像观察,自变量的变化,函数值的变化规律。

(三)明确这是函数的一种性质,明确定义,并强调定义中的注意事项,怎样理解定义中的规定。

(四)教师具体以例题进行示范,学生们领会对函数奇偶性的`认识,并怎样进行判断。

(五)同学们在领会的基础上,进行实际训练,达到对知识的理解和应用。

二、这种教学模式的优势是:循序渐进,学生能够实际参与,在教学中体现和谐,教师的导和学生的练保证教学的效果。

这种教学模式的缺点与解决方法是:

还缺乏对学生更高层次的参与的调动,尤其是职业中学中部分在初中已经放弃学习的同学的参与问题。对配套练习要进一步细化,要对每一个知识点都要精心设计相应知识点的训练,图像的认识上,要加大同学们对生活的感知和相关软件的使用,并能在电脑上实际体验函数图像的对称情况。

数的奇偶性教学设计教学篇三

一、说教学内容及农远资源说明。

《数的奇偶性》是北师大版教材五年级上册第一单元《倍数与因数》最后一课时;是在学生掌握奇数、偶数特点等知识基础之上的一次延伸;是让学生学会用数学策略解决生活问题的一次尝试。因此,本课时教学资源的使用目的主要是帮助学会解决问题的策略,体验猜想结果—举例验证—得出结论这种数学研究方式。农远资源我主要应用于课前的情境创设;教学中对学生体验猜想结果—举例验证—得出结论数学研究方式的辅助;以及学生应用数学模型解决问题中的游戏等环节。

二、说教学目标。

我从知识与技能角度确立目标一:尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。从过程与方法角度确立目标二:通过活动让学生经历猜想结果—举例验证—得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。从情感、态度和价值观角度确立目标三:让学生在活动中体验研究方法,感悟解决问题的不同策略,提高推理能力。

三、说设计理念及农远资源的辅助使用。

本课我是四个方面进行设计的。

第一,我从故事引入,创设一个以摆渡为生的船夫想请学生们帮他解决一个问题这一情境。学生遇到这样一个以前从未见过的问题,便产生认知上的冲突,激发了学生的学习兴趣,也调动了学生学习的积极性,在情境创设中,多媒体资源的辅助使用,有效的调动了学生的求知欲,牢牢地把学生吸引在对未知内容的探究之上了。

第二,我组织学生分小组合作,动手操作,感受数的奇偶性,理解解决问题的不同策略,经历猜想结果—举例验证—得出结论这一数学研究方式。

这部分内容是本课教学的重点也是难点,我安排三个活动,层层推进,帮助学生学习。

活动一:对于船夫提出的划11次船在南岸还是北岸这一问题,我组织学生讨论,寻找解决问题的办法。引导学生尝试用不同的方法来解决,全班汇报交流时,利用媒体展示“列表”、“画示意图”等方式让学生理解解决问题的不同策略。

活动二:让学生翻动自己准备的纸杯子,通过动手操作进一步发现数的奇偶性规律,同时让学生想若把“杯子”换成“硬币”你能提出怎样的问题,并试着回答这些问题,再用硬币操作验证。安排这一活动目的是培养学生提出假设问题—猜想结果—再实践验证的'数学研究习惯,发展学生主动探究能力。

活动三:是让学生合作探究加法中数的奇偶性,让学生体验猜想结果—举例验证—得出结论的数学研究方式。本活动主要是让学生相互之间加强交流,形成自主、合作、探究的数学学习课堂。的使用有效的帮助学生建构出数学模型。

第三,运用数学模型,解决实际问题。

这一部分我安排三个内容。第一个内容是出示几个算式,让学生判断结果是奇数还是偶数。这一内容在学生已有数的奇偶性特征这一数学模型经验之后,独立完成已经没有障碍。第二个内容是有3个杯子全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转使得3个杯子全部杯口朝下。这一内容是对前面同一问题的拓展,目的是让学生进一步理解奇偶性,同时培养学生动手实践能力。第三个内容,我安排的是一个游戏,也是一个实际问题,游戏是用骰子掷一次得到一个点数,从a点开始,连续走两次,走到哪一格,那一格的奖品归你。通过这个游戏让学生明白无论掷几,走两次都是偶数,而奖品都在奇数区域里,所以不论怎样都不能获得奖品。让学生运用学过的数学知识解开其中的奥秘,获得情感体验。

第四,总结反思,交流收获,同时进一步拓展知识视野,让学生将学习的知识与生活实际联系起来,培养学生初步的数学应用能力。

以上四步骤,让学生经历从情境创设到建构数学模型,再到运用模型解决解决问题三个阶段,三种层次。学生学会用自己的策略解决问题。媒体资源的辅助使用,让学生的体验更深刻,教学效果更显著,完全实现了课前确立的教学目标。

数的奇偶性教学设计教学篇四

教学内容:北师大版小学数学五年级上册第一单元。

教学目标:

1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。

2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。

3、让学生在活动中体验研究方法,提高推理能力。

教学准备:一次性纸杯、硬币、课件等。

一、创设情境,产生认知冲突。

(愿意)。

课件出示情境图和问题。

【设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。

二、分组活动,动手操作,感受奇偶性,建构数学模型。

1、活动一:

讨论:船夫将小船摆渡11次后,船在南岸还是北岸?

小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。

2、活动二:

学生动手操作,发现规律,汇报结果。

师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。

3、活动三:

课件出示填有偶数的图形,奇数的正方形。

小组合作,完成表格(先猜一猜结果,再举例验证)。

小组汇报,全班交流。

(师板书:)。

偶数+偶数=偶数。

奇数+奇数=偶数。

偶数+奇数=奇数。

【设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的数学学习课堂,让学生经历数学模型建构的全过程。

三、运用模型,解决问题。

1、判断下列算式的结果是奇数还是偶数。

10389+2004:11387+131:

268+1024:46786+25787:

6007+8997:

你手上只有一个杯子怎么办?

……(学生小组合作)。

完成后,汇报反馈。

3、数学游戏。

规则如下:用骰子掷一次,得到一个点数,以a点为起点,连续走两次,转到哪一格,那一格的奖品归你。

谁想上来参加?

……(学生玩游戏。)。

这样玩下去,能获得奖品吗?为什么?

【设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

板书设计:

偶数+偶数=偶数。

奇数+奇数=偶数。

偶数+奇数=奇数。

数的奇偶性教学设计教学篇五

本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点。

1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标。

1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;

2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析。

1、教学方法:启发引导式。

结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用“引导发现法”进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。

2、学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。

三、教辅手段。

四、教学过程。

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。

(一)设疑导入,观图激趣。

让学生感受生活中的美:展示图片蝴蝶,雪花。

学生举例生活中的对称现象。

折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。

问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点。

以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的.痕迹,然后将纸展开。观察坐标喜之中的图形:

问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点。

(二)指导观察,形成概念。

这节课我们首先从两类对称:轴对称和中心对称展开研究。

思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何。

给出图象,然后问学生初中是怎样判断图象关于轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律。

借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。

思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征。

引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:

(1)函数f(x)的定义域为a,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数。

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢。

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:

强调注意点:“定义域关于原点对称”的条件必不可少。

接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:

(1)求出函数的定义域,并判断是否关于原点对称。

(2)验证f(-x)=f(x)或f(-x)=-f(x)3)得出结论。

给出例题,加深理解:

例1,利用定义,判断下列函数的奇偶性:

(1)f(x)=x2+1。

(2)f(x)=x3-x。

(3)f(x)=x4-3x2-1。

(4)f(x)=1/x3+1。

提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?

得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数。

接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)。

然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:

给出例2:书p63例3,再进行当堂巩固,

1。书p65ex2。

y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。

归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数。

(三)学生探索,发展思维。

思考:1,函数y=2是什么函数。

2,函数y=0有是什么函数。

(四)布置作业:课本p39习题1、3(a组)第6题,b组第3。

五、板书设计。

数的奇偶性教学设计教学篇六

在本节课教学过程中,我让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的”任意”值都成立,最后在这个基础上建立奇偶函数的概念。

在本节课的教学中我还要注意到以下几个方面的问题:

1.幻灯片的设计。

幻灯片的使用在一定程度上很好的辅助我的教学活动,但是数学学科中应注意到幻灯片的设计,在出现某些字或者数字时应直接出现,而不要设计成动画的形式,以免学生分散注意力。

2.学生练习。

在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的`考察,可以采用学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。

3.例题书写。

在数学教学中我们都要对例题的解题过程进行讲解,并书写解题过程,以便让学生更好的模仿。在书写解题过程或定义时要认真板书,保证字迹清楚,便于学生仿照。

4.语言组织。

在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。

5.教学环节的完整。

在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,有时候可能因为紧张等各种因素往往忽略小细节,遗漏其中的某一环节,造成教学设计不完善。在以后的教学过程中要注意这些环节。

6.教案设计的完整。

在本节课教学中我因为考虑到有幻灯片而没有在教案中设计“板书设计”这个环节,但是在授课过程中又用到了板书,所以一定要设计“板书设计”,以保证教案的完整性。

以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。

数的奇偶性教学设计教学篇七

1、创设问题情境的目的在于上课时创设一种学生探索的氛围,以激发学生的学习兴趣,为学生提供自我表现的机会,培养学生的问题意识,根据学生对游戏更感兴趣的特点。我设计了翻手掌的游戏活动,从课堂的效果看学生非常感兴趣争先恐后跃跃欲试,但在翻100次后,学生试过几十次之后,停下了,同学们的学习情绪逐步高涨,要急于发现规律。这时学教师适时抓住学生好奇的时机,提出“你发现了什么规律呢?”的问题,这一提问适时地把学生引入到探究的问题中。

2、重视学生活动,引导学生用“经历尝试列式计算—初步得出结论—举例验证—得出结论”的学习方法解决奇数、偶数相加减的规律,提高学生推理能力。

3、本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还需要改进。

4、对于数的奇偶性的运用的举例有些不恰当。我应该利用课堂中生成的资源灵活练习。

5、数学课上的板书必须要能诠释重点,疏通难点。我的板书太简单了。

6、我能用自己的情感感染学生的情感,用我的态度影响学生的态度,让学生在乐中玩,玩中思,充分完成了教学任务,达到了教学目标。

7、对学生适时评价,让学生感受到成功的喜悦。

反思这堂课,我觉得应及时审视自己的教学,调控学生的情绪,引导学生积极参与到课堂中。在练习题的设计中,可以利用课堂中生成的资源灵活练习,而不是一成不变的,这就要求教师正确处理好预设与生成的资源。还应该提高自己的应变能力,处理好课堂随机生成的随机情境,加强对学生及时准确恰当的评价。

【教学内容】。

【学习目标】。

1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单的问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现计算中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

3、在学习“数的奇偶性”的活动中,能组织学生积极参与数学学习活动,用我的情感塑造学生的情感。

教学重点:发现加减法中数的奇偶性的变化规律。

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题。

【教学准备】据学生实际多媒体教学课件。

【教学过程】。

一、创设情景,激发学生的求知欲望。

二、探索新知。

活动一:师生互动,组织学生通过多种方法发现规律(在游戏——翻手掌中发现规律)。

1、让全体学生做游戏(翻手掌)。

课件出示游戏规则:所有学生手心向下,然后依次手心向上还是向下,再把手心向下,这样来回翻。

2、思考你翻5次后,手心向下还是向上?开始游戏。

学生交流:你是怎样想的?

3、思考你翻11次后,手心向下还是向上?开始游戏。

学生交流:你是怎样想的?

4、思考你翻100次后,手心向下还是向上?开始游戏。

(为什么有的同学停下来了,要翻1000次、9999次怎么办呢?)。

[设计意图:让学生由少到多,由易到难,感受翻手掌游戏,感悟翻手掌中的数学规律。]。

5、思考:要解决翻100次后你的手心向下还是向上?该怎么办?

(1)独立思考。

(2)集体汇报交流。

(3)老师进行解决问题方法的指导:列表或画图。

6、通过解决这些问题,观察板书,你有什么发现?

翻奇数次后,手心朝。

翻偶数次后,手心朝。

7、学以致用:翻100次、1000次、9999次,手心向上还是向下?

9思考:有人说手心翻了999次后,手心向下,这种说法对吗?为什么?

10、同桌问一问:手心翻了()次后,手心向(),为什么?

[设计意图:学习致用:主要考察学生对于翻手掌中发现的规律理解和运用的怎么样]。

活动二:扩展延伸、巩固所学。

1、原来利用数的奇偶性可以帮助我们解决一些问题。

(1)请同学用手里的杯子,完成第14页的试一试(课件出示:一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。翻动10次后,杯口朝,翻动19次后杯口朝。尝试说说理由)。

a、独立思考。

b、集体交流,指名说说自己的想法。

(2)体会奇偶数的相对性。

改变杯子开始状态杯口朝下,看有什么规律。

质疑:为什么刚才奇数次杯口朝下,现在奇数次的杯口确向上呢?

小结:因为每次的起点不一样。所以的奇数次位置也会发生改变。但我们只要记住第一次的位置,就可以以不变应万变。

2、结合生活实际,运用所学解决问题。

根据你的生活经验,你能举出和今天学习的类似的例子吗?

(二)自主探究奇偶性在计算中的作用。

1、出示下面的数,让学生判断圈里、方框框里的数各是什么数?

1、11、21、49、21、25、37、3、101、87。

2、12、18、20、6、34、80、16、52。

偶数。

奇数。

(1)你们从圆中任意选两个数相加或相减,我就能判断它们的和或差是奇数还是偶数?(不信或信)。

想知道老师这么快说出来的奥秘吗?

(2)让学生从正方形中任选2个数相加或相减,看你能发现什么规律?

(3)再写几组两个偶数相加减的算式,进行验证.

(4)得出结论:当两数都是偶数时,加减后的结果一定是偶数。

(5)如果从圆中任选两个数他们的和或差是奇数还是偶数?尝试验证并得出结论。

当两数都是偶数时,加减后的结果一定是偶数。

(6)如果要使两个数他们的和或差是奇数,该怎么办?

个别学生可能说:我想从圆中任选一个数再从正方形中任选一个数,他们的和是奇数。

让学生尝试验证并得出结论当两数一个是偶数、一个是奇数时,加减后的结果一定是奇数。

(三步的设计意图:教师由扶到半扶半放最后到放手让学生发现数学计算中的奇偶变化规律。)。

3、总结:通过刚才的研究,你们发现了什么规律?(能用一句话概括吗?

(1)、对于确定的两个数,无论加法还是减法,运算后的奇偶性是一样的。

(2)、当两数的奇偶性相同时,加减后的结果一定是偶数;当两数的奇偶性不同时,加减后的结果一定是奇数。

[设计意图:通过以上三个环节的探索,让学生总结规律,提高学生的表达能力。]。

4、考考你:完成数学书上15页第(7)题:判断下列算式的结果是奇数还是偶数。

10389+200411387+131268+1024。

思考:你是怎样判断的?

5、你敢来挑战吗?

2+4+6+8+10……+998+1000。

2+4+6+8+10……+998+1000+1。

同学们学得很好,掌握了这些规律,我们就可以发现生活中的一些小秘密。

三、实践应用,解决问题。

1、小小编辑。

你能从我们天天翻看的数学书里发现有关数的奇偶性的问题吗?

a、独立思考。

b、集体交流。

打开和闭合书分别对应着翻的次数;奇数页在正面,偶数页在背面……。

2、开关的秘密。

(1)独立思考,同桌讨论。

(2)集体交流。

四、畅谈收获。

你学到了什么?

五、实践作业的布置。

判断结果的奇偶性,并说说你发现了什么?

文档为doc格式。

数的奇偶性教学设计教学篇八

能正确判断两数之和的奇偶性,并利用两数之和的奇偶性解决简单的实际问题;初步感知两数之积的奇偶性。

能运用所学知识和已有的经验,通过自主探索、合作交流、反思验证寻求两数之和的奇偶性的判断方法。

在探索的过程中经历“尝试、验证”的过程,体会用“数形结合”解释数学问题。

教学重点:正确判断两数之和的奇偶性。

教学难点:自主探索判断两数之和的奇偶性的方法,并验证自己的结论。

教学课件。

课件出示教材第15页例2。

1、从题目中你知道了什么?是要求我们对哪些方面作一些探索?

2、想一想,题目中的问题可以怎样表示?

引导学生整理和改编问题:

【设计意图】通过讨论,让学生经历将较复杂的数学问题用简洁的方式表达的过程,体会数学的简洁性。

(1)我们先来探究“奇数+偶数”的和是奇数还是偶数?你有什么办法?

(2)独立思考,展开交流。

方法一:列举法。

我们可以随意找几个奇数和偶数,加起来看一看,结果是奇数还是偶数?

奇数:5,7,9,11,…。

偶数:8,12,20,24,…。

奇数+偶数:5+8=13,7+12=19,9+20=29,11+24=35,…。

和都是奇数,所以奇数+偶数=奇数。

这个结论正确吗?不能确定怎么办?我们能不能尝试其他方法呢?

方法二:图示法(用奇数和偶数的特征来判断)。

因为奇数除以2余1,偶数除以2没有余数,所以奇数加偶数的和除以2仍余1,所以奇数+偶数=奇数。

大家如果理解有困难的话,我们不妨用画图来表示:

【设计意图】列举法是同学们较容易想到的方法,但这样下结论还为时过早。在讨论的基础上,教师引导学生用图示表示奇数和偶数相加的特征,利用直观来推断出结论,渗透数形结合的思想。同时初步验证刚才结论的正确性。

2、探究“奇数+奇数”“偶数+偶数”的和的奇偶性。

(2)独立思考,汇报交流。

方法一:列举法。

方法二:图示法。

(3)初步得出结论:“奇数+奇数=偶数”“偶数+偶数=偶数”。

【设计意图】在前面探究的基础上,学生已经积累一定的方法,放手让学生自己解决,并能与同学充分交流。

1、刚才得出的结论正确吗?还有其他方法吗?

(1)我们可以找一些大数再试试。

(2)你觉得哪种方法好?

1、课件出示教材第16页练习四第4小题。

(1)猜一猜。

(2)独立思考,交流想法。

预设:奇数×奇数,就是奇数个奇数相加,所以和仍然是奇数;奇数×偶数,就是偶数个奇数相加,所以得到的是偶数;偶数×偶数,就是偶数个偶数相加,和也是偶数。如图:

【设计意图】让学生经历猜想和验证的过程,并选择合适的方法来解释问题,培养学生的数学表达能力。

2、课件出示教材第17页练习四第6小题。

(1)改编问题,当甲队人数为奇数时,实际上问题就是“奇数+()=偶数”;当甲队人数为偶数时,实际上问题就是“偶数+()=偶数”。

(2)分析解答:因为“奇数+奇数=偶数”,所以当甲队人数为奇数时,乙队人数也是奇数;因为“偶数+偶数=偶数”,所以当甲队人数为偶数时,乙队人数也是偶数。

【设计意图】这是一题用“两数之和的奇偶性”来解决的简单问题,引导学生通过改编问题情境,有效降低难度,并能利用所学知识进行解决,培养学以致用的能力。

这节课我们学了哪些知识?你有什么收获?

数的奇偶性教学设计教学篇九

教学目标:尝试运用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性的变化规律在活动中体验研究的方法,提高推理能力。

教学重点:在活动中发现奇偶性变化的规律。

教学过程:

一、导入。

1、什么是奇数?什么是偶数?

2、判断下面的数是奇数还是偶数,并说说你是怎样判断的。

454823456498109。

二、新知。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动。

2、奇偶数相加的规律。

让学生观观察下面两组数,各有什么特点?

(1)801220618341652(2)1121378710125349。

试一试。

偶数加偶数奇数加奇数偶数加奇数。

判断:让学生交流判断的思路。

三、

例子:结论:

12+34=48偶数+偶数=偶数。

11+37=48奇数+奇数=偶数。

12+11=23奇数+偶数=奇数。

四、作业布置。

数的奇偶性教学设计教学篇十

义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。

1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

数字卡片,盒子,奖品。

复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)。

(一)激趣导入。

(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况。

开、关;开、关;开、关;开、关;开、关;开、关……。

让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

3、第二次汇报交流。

投影下表:

用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。

(三)巩固应用。

1、看书学习并解决小船的靠岸问题。

2、解决杯子上下翻转,杯口的朝向问题。

3、举例说说数的奇偶性还能解决哪些生活问题?

(四)活动小结。

当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。

活动2:探索奇、偶数相加的规律。

(一)有奖游戏。

1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。

2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。

3、引发思考。

4、发现规律。

学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。

5、举例验证。

6、修改游戏规则。

(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)。

(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。

(3)举例验证:奇数+偶数=奇数。

(二)总结奇、偶数相加的规律。

奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。

数的奇偶性教学设计教学篇十一

教学内容:北师大版教材五年级上学期14——15页。

教学目标:1、尝试运用“列表”“画示意图”等方法发现规律,会运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题。

教学过程:。

一、课前谈话:

我们把自然数分为奇数和偶数两类,我们还可以用它们的奇偶性来解决生活中的简单问题呢。这节课我们就来探究一下有关“数的奇偶性”的问题。(板题)。

二、创设情景,引出问题。

判断小船位置:

同学们已经带来了折好的小纸船,那么我们就把桌面当小河,把靠近自己身体的那条边当做南岸,把对面的边当做北岸,请同桌合作,一个同学操作,其他同学做记录,动手前先商量一下,你们用什么方法来记录比较简单明了。在这里我再强调一次,要记住小船的初始位置是---南岸。

生汇报:小船摆渡11次后停在南岸。

师:你们是用什么方法记录的?

师出示课件。

摆渡次数船所在的位置。

1北岸。

2南岸。

3北岸。

4南岸。

总结方法:有的同学运用了列表法,还有的同学运用了这样的画图法,这样的分析方法可以使我们直观地可以观察到小船停泊的位置,大家看,小船停在南岸,行驶奇数次后到达北岸,偶数次后回到南岸。也就是说,奇数次与初始位置相对,偶数次与初始位置相同。那么小船行驶100次后停在哪里呢?(南岸)。

是啊,如果最初的位置在北岸呢?所以我们判断最后的位置在哪里,一的要记住它的初始位置。依据初始位置进行分析和判断,才能准确的得出结论。

试一试:探究杯口方向:。

师:把杯子口朝上,放在桌上,翻动1次后杯子口朝下,翻动2次后杯口朝上。翻动10次后,杯口朝___。请同学们分析一下吧。

汇报交流。

生回答。

师小结:是的,我们可以利用数的奇偶性解决生活中的一些简单问题。

同学们表现真不错,那么现在我想奖励一下同学们,但得到奖品是有条件的,看到老师拿的两个盒子了吗?在每个盒子里,我放了相应的数字卡片,如果你抽出的数附和我的条件,你就能获奖。听好了,我的条件是,从每个盒子里抽出两张数字卡片,把抽到的数字相加,得数是奇数的,就会得到奖品。你喜欢方形盒子,还是喜欢圆形盒子呢?请、同学先来吧。

生从两个盒子中分别抽出卡片并把卡片上的数字相加,师随机板书。

生:圆形盒子都是偶数,方形盒子都是奇数。

师:从圆形盒子里抽出的是偶数加偶数,得到的还是偶数。从方形盒子里抽出的是奇数,得到的也是偶数。

师:那谁有办法让自己获奖呢?

生:从两个盒子里各抽一个数字。

师:我们现在看看谁最善于总结了,通过刚才的游戏,你“发现”(板书)什么了?

生:

那这些卡片都是老师设计好的,仅仅靠卡片上的数,我们就下定论似乎还早了些。我们还需要什么呀?对,还需要进一步的“验证”(板书)那么就请你再自己任意出几个数,验证一下这三种情况吧。验证后把你的结论跟小组同学交流一下。

独立完成后小组交流,并汇报发现的奇偶数规律。

(偶数+偶数=偶数奇数+奇数=偶数奇数+偶数=奇数)。

生齐读一遍。

五、运用新知解决问题:

1、完成数学书p15第(7)题。

问:你是怎样判断的?

同学们学得很好,掌握了这些规律,我们就可以发现生活中的一些小秘密。

4、15个苹果两个小朋友分,若每个小朋友都分得奇数,能分吗?为什么?

六、课堂小结:(1)这节课同学们有什么收获?

(2)你用什么方法掌握了知识?

(3)学了这节课,你还想研究奇偶数的什么规律?

(师小结:我们利用画图和列表的方法运用数的奇偶性解决了生活中的简单问题。利用观察—发现---验证—结论的方法研究奇数和偶数在加法计算中的规律,在以后的学习中同学们也可以利用这种方法解决问题。)。

奇数+奇数+奇数+奇数+……奇数=?数(“偶数”个)。

奇数+奇数+奇数+奇数+……+奇数=?数(“奇数”个)。

数的奇偶性教学设计教学篇十二

北师大版小学数学五年级上册第一单元14-15页《数的奇偶性》。《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的。

教材安排了几个不同的数学活动和游戏让学生体会数的奇偶变化规律,引发学生的思考,让他们在探究规律的活动中,发现解决问题的方法,从而运用这些方法去解决生活中的实际问题。

根据我对教材的理解,本课主要设计了两个活动:

活动一:通过具体情境让学生体会数的奇偶性规律,会利用数的奇偶性规律解决一些简单的实际问题。主要是让学生发现小船开始状态在南岸,“奇数次在北岸,偶数次在南岸”的规律。(我将教材改为学生翻手掌,得出规律)对学生进行列表、画图等解决问题策略的指导。

活动二:主要是运用上面的奇偶规律探索数学计算中的奇偶变化规律。通过经历尝试列式计算—初步得出结论—举例验证—得出结论过程,探索奇数、偶数相加的规律,提高学生推理能力。

二、说学生分析。

五级学生已经有了一些探索数学问题的方法和总结规律的经验,思维比较活跃。他们能随时发现并提出数学问题。在解决问题的过程中,能根据具体问题选择有效的解决方法和策略,并能及时地总结自己的方法,在运用中积累经验。他们的好奇心和探索的欲望极强,渴望发现规律。通过前侧,我发现有三分之一的学生已经初步掌握所学知识,我通过下面的教学,可以让大部分学生掌握本节课所学的内容,形成认识,实现学习目标。

三、说学习目标。

1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单的问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现计算中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

3、在学习“数的奇偶性”的活动中,能组织学生积极参与数学学习活动。

教学重点:发现加减法中数的奇偶性的变化规律。

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题。

四、说教学过程:

一、创设情景,激发学生的求知欲望。

二、探索新知。

活动一:师生互动,组织学生通过多种方法发现规律(翻手掌)。

1、让全体学生做游戏(翻手掌)。

课件出示游戏规则:所有学生手心向下,然后依次手心向上还是向下,再把手心向下,这样来回翻。

2、思考你翻5次后,手心向下还是向上?

学生交流:你是怎样想的?

(1)独立思考。

(2)集体汇报交流。

(3)老师进行解决问题方法的指导:列表或画图。

4、通过解决这些问题,观察板书,你有什么发现?

翻奇数次后,手心朝。

翻偶数次后,手心朝。

5、学以致用:翻100次、1000次、9999次,手心向上还是向下?

7、思考:有人说手心翻了999次后,手心向下,这种说法对吗?为什么?

8、同桌问一问:手心翻了次后,手心向,为什么?

活动二:扩展延伸、巩固所学。

1、原来利用数的奇偶性可以帮助我们解决一些问题。

(1)请同学用手里的杯子,完成第14页的试一试(课件出示:一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。翻动10次后,杯口朝,翻动19次后杯口朝。尝试说说理由)。

a、独立思考。

b、集体交流,指名说说自己的想法。

(2)体会奇偶数的相对性。

改变杯子开始状态杯口朝下,看有什么规律。

质疑:为什么刚才奇数次杯口朝下,现在奇数次的杯口确向上呢?

小结:因为每次的起点不一样。所以的奇数次位置也会发生改变。但我们只要记住第一次的位置,就可以以不变应万变。

2、结合生活实际,运用所学解决问题。

根据你的生活经验,你能举出和今天学习的类似的例子吗?

(二)自主探究奇偶性在计算中的作用。

1、出示下面的数,让学生判断圈里、方框框里的数各是什么数?

1、11、21、49、21、25、37、3、101、87。

2、12、18、20、6、34、80、16、52。

偶数奇数。

(1)你们从圆中任意选两个数相加或相减,我就能判断它们的和或差是奇数还是偶数?(不信或信)。

想知道老师这么快说出来的奥秘吗?

(2)让学生从正方形中任选2个数相加或相减,看你能发现什么规律?

(3)再写几组两个偶数相加减的算式,进行验证.

(4)得出结论:当两数都是偶数时,加减后的结果一定是偶数。

(5)如果从圆中任选两个数他们的和或差是奇数还是偶数?尝试验证并得出结论。

当两数都是偶数时,加减后的结果一定是偶数。

(6)如果要使两个数他们的和或差是奇数,该怎么办?

个别学生可能说:我想从圆中任选一个数再从正方形中任选一个数,他们的和是奇数。

3、总结:通过刚才的研究,你们发现了什么规律?(能用一句话概括吗?

(1)、对于确定的两个数,无论加法还是减法,运算后的奇偶性是一样的。

(2)、当两数的奇偶性相同时,加减后的结果一定是偶数;当两数的奇偶性不同时,加减后的结果一定是奇数。

4、考考你:完成数学书上15页第(7)题:判断下列算式的结果是奇数还是偶数。

思考:你是怎样判断的?

5、你敢来挑战吗?

2+4+6+8+10……+998+1000。

2+4+6+8+10……+998+1000+1。

同学们学得很好,掌握了这些规律,我们就可以发现生活中的一些小秘密。

三、实践应用,解决问题。

1、小小编辑。

你能从我们天天翻看的数学书里发现有关数的奇偶性的问题吗?

a、独立思考。

b、集体交流。

打开和闭合书分别对应着翻的次数;奇数页在正面,偶数页在背面……。

2、开关的秘密。

(1)独立思考,同桌讨论。

(2)集体交流。

四、畅谈收获。

你学到了什么?

五、实践作业的布置。

判断结果的奇偶性,并说说你发现了什么?

板书设计:

列表法画图法。

上面。

五、说课后反思。

我的感受是:

1、创设问题情境的目的在于上课时创设一种学生探索的氛围,以激发学生的学习兴趣,为学生提供自我表现的机会,培养学生的问题意识,根据学生对游戏更感兴趣的特点。我设计了翻手掌的游戏活动,从课堂的效果看学生非常感兴趣争先恐后跃跃欲试,但在翻100次后,学生试过几十次之后,停下了,同学们的学习情绪逐步高涨,要急于发现规律。这时学教师适时抓住学生好奇的时机,提出“你发现了什么规律呢?”的问题,这一提问适时地把学生引入到探究的问题中。

2、重视学生活动,引导学生用“经历尝试列式计算—初步得出结论—举例验证—得出结论”的学习方法解决奇数、偶数相加减的规律,提高学生推理能力。

3、本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还需要改进。

4、对于数的奇偶性的运用的举例有些不恰当。我应该利用课堂中生成的资源灵活练习。

5、数学课上的板书必须要能诠释重点,疏通难点。我的板书太简单了。

6、我能用自己的情感感染学生的情感,用我的态度影响学生的态度,让学生在乐中玩,玩中思,充分完成了教学任务,达到了教学目标。

7、对学生适时评价,让学生感受到成功的喜悦。

反思这堂课,我觉得应及时审视自己的教学,调控学生的情绪,引导学生积极参与到课堂中。在练习题的设计中,可以利用课堂中生成的资源灵活练习,而不是一成不变的,这就要求教师正确处理好预设与生成的资源。还应该提高自己的应变能力,处理好课堂随机生成的随机情境,加强对学生及时准确恰当的评价。

数的奇偶性教学设计教学篇十三

年级。

五年级。

授课人。

电建小学魏锦。

授课时间。

2009.9.16。

课题。

教研专题。

培养学生良好习惯的有效策略。

教学目标。

知识与技能:1.尝试用“列表、”画示意图“等解决问题的策略发现规律,运。

用奇偶性解决生活中的简单问题;

2.经历探索加法中数的奇偶性变化过程,掌握规律。

过程与方法:1.经历探索加法中数的奇偶性变化过程;

2.在活动中体验研究探索规律的方法逐步提高。

情感与态度:1.增强学生对数学的信心,培养数学思维;

2.体验成功的喜悦。

教学重点。

尝试用列表、画示意图等方法发现规律,运用数的奇偶性解决生活中的一。

些简单问题。

教学难点。

发现奇偶性规律,并运用规律解决问题。

列表画图举例直观教学教师引导。

学法指导。

动手操作小组讨论发现规律应用规律解决问题。

教具学具。

多媒体硬币杯子。

课堂教学要紧密联系学生的生活环境,以学生的经验和已有知识出发,创。

设有助于学生自主学习,合作交流的情境,对学生在问题情境中发现学习数。

学是生活的需要,可以解决身边问题。

教师导学活动。

学生学习活动。

环节反思。

二、猜想验证,认识奇偶性。

1.引导学生进行列表,画示意图等发法解决问题。

2.有人说摆渡100次后,小船在此岸,你同意他的说法吗?

3.引导学生归纳、总结、板书摆渡奇数次方向改变。

摆渡偶数次方向不变。

1.一个杯子口朝上,翻动1次。

杯口朝下,翻动2次杯口朝上。翻动10次,19次呢?

2.同学们不仅帮助了老师,还从中发现了规律,老师打算送你们一些礼物。

3.怎样修改游戏规则能得到奖品。

4.引导概括。

四、深入体会,运用新知。

出示练习题。

10389+2004。

11387+131。

22280+102。

跃跃欲试,大胆猜测,并说明理由。

以同桌为单位,再次验证,在探索中逐步发现规律。

小组讨论,尝试发现结论。

活动2:

1.说明理由。

2.同桌互相提类似问题。

学生进行活动,发现问题,讨论分析原因。

自由讨论,尝试总结。

自主探索。

奇数+奇数=偶数。

偶数+偶数=偶数。

奇数+奇数=奇数。

运用新知,直接判断。

激发学生兴趣,培养问题意识。

重视学生活动,引导学生用猜想、验证归纳的学习方法解决问题。

从课堂效果看,学生非常感兴趣。

抓住有力时机启发引导适时地把学生引如到探究的问题中。

可以利用课堂中生成的资源灵活练习。

教师导学活动。

学生学习活动。

环节反思。

五、总结延伸。

畅谈自己的所想,所思。

教学反思:

整堂课充分体现了以学生为主体,老师是学生的组织者、引导者、合作者。在整个教学过程中,学生始终在动手实践,自主探究中学习知识,学生乐学、爱学,使学生车从学会变成我要学,我会学,激发了学生学习热情,培养了探究能力。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制