人教版数学必修5教学设计及反思(四篇)
文件格式:DOCX
时间:2023-03-10 00:00:00    小编:梨园长

人教版数学必修5教学设计及反思(四篇)

小编:梨园长

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

人教版数学必修教学设计及反思篇一

1、知识与技能

(2)熟练掌握由的图象得到函数的图象的方法;

(3)会由函数y=asin(ωx+φ)的图像讨论其性质;

(4)能解决一些综合性的问题。

2、过程与方法

通过具体例题和学生练习,使学生能正确作出函数y=asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

重点:函数y=asin(ωx+φ)的图像,函数y=asin(ωx+φ)的性质。

难点:各种性质的应用。

投影仪

【创设情境,揭示课题】

函数y=asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

4、归纳整理,整体认识

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

5、布置作业:习题1—7第4,5,6题。

课后小结

归纳整理,整体认识

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业:习题1—7第4,5,6题。

人教版数学必修教学设计及反思篇二

教学目标

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型.

教学重难点

教学过程

一、练习讲解:《习案》作业十三的第3、4题

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型.

四、作业《习案》作业十四及十五。

人教版数学必修教学设计及反思篇三

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一. 基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

二.问题讨论

例6:在某海滨城市附近海面有一台风,据检测,当前台

风中心位于城市o(如图)的东偏南方向

300 km的海面p处,并以20 km / h的速度向西偏北的

方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,

并以10 km / h的速度不断增加,问几小时后该城市开始受到

台风的侵袭。

一. 小结:

1.利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段.

三.作业:p80闯关训练

人教版数学必修教学设计及反思篇四

教学准备

教学目标

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理垂直的问题;

4.掌握向量垂直的条件.

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学过程

并规定0向量与任何向量的数量积为0.

2、两个向量的数量积与实数乘向量的积有什么区别?

一、向量的概念

2、叫做单位向量

4、且的向量叫做相等向量

5、叫做相反向量

二、向量的表示方法:几何表示法、字母表示法、坐标表示法

三、向量的加减法及其坐标运算

四、实数与向量的乘积

定义:实数 λ 与向量 的积是一个向量,记作λ

五、平面向量基本定理

六、向量共线/平行的充要条件

七、非零向量垂直的充要条件

八、线段的定比分点

定比分点坐标公式及向量式

九、平面向量的数量积

(3)平面向量的数量积的坐标表示

十、平移

典例解读

其中,正确命题的序号是______

4、下列算式中不正确的是( )

(a) ab+bc+ca=0 (b) ab-ac=bc

(c) 0·ab=0 (d)λ(μa)=(λμ)a

5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )

7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )

(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

(c)2x-y=0 (d)x+2y-5=0

10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

(a)-5 (b)5 (c)7 (d)-1

11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

(a)2 (b)0 (c)1 (d)-1/2

16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)

教学准备

教学目标

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型.

教学重难点

教学过程

一、练习讲解:《习案》作业十三的第3、4题

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型.

四、作业《习案》作业十四及十五。

教学准备

教学目标

1、 知识与技能

(1)进一步理解表达式y=asin(ωx+φ),掌握a、φ、ωx+φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、 过程与方法

通过具体例题和学生练习,使学生能正确作出函数y=asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、 情感态度与价值观

通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点

重点:函数y=asin(ωx+φ)的图像,函数y=asin(ωx+φ)的性质。

难点: 各种性质的应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

函数y=asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、布置作业: 习题1-7第4,5,6题.

课后小结

归纳整理,整体认识

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业: 习题1-7第4,5,6题.

板书

教学准备

教学目标

一、知识与技能

二、过程与方法

三、情态与价值

教学重难点

难点: 理解弧度制定义,弧度制的运用.

教学工具

投影仪等

教学过程

一、 创设情境,引入新课

师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)

二、讲解新课

2.弧度制的定义

四、课堂小结

度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

五、作业布置

作业:习题1.1 a组第7,8,9题.

课后小结

度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

课后习题

作业:习题1.1 a组第7,8,9题.

板书

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
人教版数学必修5教学设计及反思(四篇) 文件夹
复制