最新数的奇偶性教学设计教学反思 数的奇偶性学情分析精选(7篇)
文件格式:DOCX
时间:2023-04-03 00:00:00    小编:半山公考面试

最新数的奇偶性教学设计教学反思 数的奇偶性学情分析精选(7篇)

小编:半山公考面试

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

数的奇偶性教学设计教学反思数的奇偶性学情分析篇一

1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。

2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。

3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

教学重点:

探索并理解数的奇偶性

教学难点 :

能应用数的奇偶性分析和解释生活中一些简单问题

教学过程 :

一、游戏导入  ,感受奇偶性

1、游戏:换座位

首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。

(游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)

2、讨论:为什么会出现这种情况呢?

学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。

(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)

3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10……是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9……不时的倍数,这样的数就叫做奇数。

二、猜想验证, 认识奇偶性

1、设置悬念、激发思维

2、学生猜想、操作验证

学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。

汇报成果:

奇数个

偶数个

你能举几个例子说明一下吗?

(学生的举例可以引导从正反两个角度进行)

3、深化

三、实践操作、应用奇偶性

我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。

学生动手操作,发现规律:奇数次朝下,偶数次朝上。

你手上只有一个杯子怎么办?(学生:小组合作)

学生开始动手操作。

反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。

引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。

学生动手操作,尝试发现

交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。

学生再次操作,感受过程,体验结论。

3、游戏。

规则如下:用骰子掷一次,

得到一个点数,以a点为起点,

连续走两次,转到哪一格,那

一格的奖品就归你。谁想上来

参加?

学生跃跃欲试……如果继

续玩下去有中奖的可能吗?谁

不想参加呢?为什么?

生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。

学生自由说。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

请同学们课后去尝试探索这个命题,可以独立思考,也可以找人合作。

数的奇偶性教学设计教学反思数的奇偶性学情分析篇二

教学内容:北师大版小学数学五年级上册第一单元。

教学目标:

1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。

2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。

3、让学生在活动中体验研究方法,提高推理能力。

教学准备:一次性纸杯、硬币、课件等。

教学过程环节设计:

一、创设情境,产生认知冲突。

(愿意)

课件出示情境图和问题。

【设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。

1、活动一:

讨论:船夫将小船摆渡11次后,船在南岸还是北岸?

小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。

2、活动二:

学生动手操作,发现规律,汇报结果。

师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。

3、活动三:

讨论:加法中数的奇偶性与结果的奇偶性。

课件出示填有偶数的图形,奇数的正方形。

小组合作,完成表格(先猜一猜结果,再举例验证)

小组汇报,全班交流。

(师板书:)

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

【设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的数学学习课堂,让学生经历数学模型建构的全过程。

三、运用模型,解决问题。

1、判断下列算式的结果是奇数还是偶数。

6007+8997:

你手上只有一个杯子怎么办?

……(学生小组合作)

完成后,汇报反馈。

3、数学游戏。

规则如下:用骰子掷一次,得到一个点数,以 a点为起点,连续走两次,转到哪一格,那一格的奖品归你。

谁想上来参加?

……(学生玩游戏。)

这样玩下去,能获得奖品吗?为什么?

【设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

板书设计:

数 的 奇 偶 性

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

数的奇偶性教学设计教学反思数的奇偶性学情分析篇三

1、通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数=奇数。

2、经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。

3、结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识和能力。

从生活中的摆渡问题,发现数的奇偶性规律。

运用数的奇偶性规律解决生活中的实际问题。

实物投影仪、一个杯子。

每人一枚硬币。

一、揭示课题:

自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。

二、组织活动,探索新知。

(一)活动一:示图:小船最在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。

1、(1)小船摆渡11次后,船在南岸还是北岸?为什么?

(2)有人说摆渡100次后,小船在北岸。他的说法对吗?为什么?

2、请任说一个摆渡的次数,学生回答在南岸还是北岸?

3、请学生列表并观察。

4、想:摆渡的次数与船所在的位置有什么关系?

摆渡奇数次后,船在岸。

摆渡偶数次后,船在岸。

(二)活动二:试一试

1、师:一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝---,反动19次后杯口朝-----。

2、师示范,生活动:

摆开始状态第1次第2次第3次

下上下(师示范,生活动)

3、师:任说一个翻动的次数,学生抢抢抢答杯口朝上还是朝下?

4、观察杯口,找规律:

想一想:翻动的次数与杯口的朝向有什么关系?

翻动奇数次后,杯口朝。

翻动偶数次后,杯口朝。

5、师:把“杯子”换成“硬币”你能提出类似的问题吗?

6、学生你说我答,一人任说一个翻动次数,另一人判断杯口朝上还是朝下。

(三)活动三:观察下面两组数:

1、出示圆内数:121820346801652

2、出示方框内数1149252133710187

(1)读一读:

(2)说一说圆中的数有什么特点?

(3)方框中的数有什么特点?

3、偶数有什么特征?奇数有什么特征?

(四)活动四:试一试:

1、从圆中任意取出两个数相加,和是偶数。

同桌两人:一人说算式,一人计算和。

师:从以上举例可以发现?

任请一组同桌汇报,

(1)偶数+偶数=()(2)从正方形中任意取出两个数相加,和是。

(3)任意写出两个偶数,它们的和是。

(4)任意写出两个奇数,它们的和是。

(5)分别从圆和正方形中各取一个数相加,和是。

(6)任意写出一个偶数,一个奇数,它们的和是。

(7)判断下列算式的结果是奇数还是偶数。

10389+20xx=

11387+131=

三、总结。

这节课同学们有什么收获和体会?希望同学们做一个生活中的细心观察者,发现并创造我们美好的生活。

数的奇偶性教学设计教学反思数的奇偶性学情分析篇四

教学内容:北师大版教材5年级上册。

教材分析:

教材安排了几个不同的数学活动和游戏让学生体会数的奇偶变化规律,引发学生的思考,让他们在探究规律的活动中,发现解决问题的方法,从而运用这些方法去解决生活中的实际问题。

根据我对教材的理解,本课主要设计了两个活动:

活动一:通过具体情境让学生体会数的奇偶性规律,会利用数的奇偶性规律解决一些简单的实际问题。主要是让学生发现小船开始状态在南岸,“奇数次在北岸,偶数次在南岸”的规律。对学生进行列表、画图等解决问题策略的指导。

活动二:主要是运用上面的奇偶规律探索数学计算中的奇偶变化规律。

学情分析:

5年级学生已经有了一些探索数学问题的方法和总结规律的经验,思维比较活跃。他们能随时发现并提出数学问题。在解决问题的过程中,能根据具体问题选择有效的解决方法和策略,并能及时地总结自己的方法,在运用中积累经验。学生是伴随课程改革成长起来的,他们有较好的学习习惯,能认真倾听,敏锐地捕捉有用的信息,并能与同学有效的合作。他们好奇心和探索的欲望极强,渴望发现规律。在几年的学习中,他们的学习能力越来越强,准确的表达、恰当的评价、严肃认真的态度都很突出。估计学生可以在活动中自主探索本课的学习内容,形成认识,实现学习目标。

教学目标:

1.通过具体情境,让学生学会运用“列表”、“画示意图”等方法解决问题的策略,发现规律,运用数的奇偶性规律解决生活中的一些简单问题。

2.经历探索加法中数的奇偶性变化的过程,在活动中发现加法中的奇偶的变化规律,并尝试探索减法的奇偶变化规律。

3.在活动中经历运用数学方法的过程,提高推理能力,提升数学思想。

教学重、难点:

1.学生尝试运用“列表”、“画示意图”等解决问题的策略发现规律,运用数的奇偶性规律解决生活中的一些简单问题,积累数学经验。

2.在活动中自主探索奇偶性的变化规律的策略。

教学设想:

1.创设情境,激发学生的学习兴趣。

2.引导学生主动探究,给予学生探索的时间和空间。

3.指导学生学会用自己的方法探索解决问题。

4.在探索规律的过程中培养学生的数学思维品质。

教学准备:课件等。

教学过程:

一、创设情境,激趣导入

师:前段时间老师去了黄河附近旅游,祖国山川的美景,让我留连忘返。给我留下印象最深的是黄河边上一个以摆渡为生的老人。他生活在黄河边,工作在黄河边,他那勤劳勇敢的精神,让我难以忘怀。同学们,知道什么是“摆渡”吗?(生看课件,理解“摆渡”一词。)

(做“你说我猜”的游戏,摆渡船开始状态在南岸。学生说数,教师猜测船在哪一岸?)

师:其实老师掌握了数的奇偶性的规律。(师板书:数的奇偶性。)这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!

二、观察思考,发现规律

(同桌研讨:用什么方法可以知道船在哪岸呢?)

学生汇报:1.数数的方法。随着学生的回答,师适时演示课件。2.列表方法。师演示列表方法,生完成手中的表。

让学生观察“画示意图”、“列表”两种解题方法,引导他们从中发现规律。

学生总结:船摆渡奇数次,船在北岸。船摆渡偶数次,船在南岸。

师:老师就是用这个规律,很快判断出小船在哪侧岸边。现在你们也想试一试吗?(教师说数,学生猜船在哪侧的岸边。)

师:你们猜得可真快,如果有人说小船开始状态在南岸,摆渡100次,小船在北岸,这种说法对吗?为什么?(指生说理由。)

师:通过解决这些问题,观察板书,你有什么发现?

(学生尝试总结出规律:开始状态在南岸,奇数次与开始状态相反,偶数次与开始状态相同。)

师:像这样的规律在我们生活中随处可见。下面我们来看翻杯子游戏。请看大屏幕:有一个杯子开始状态是杯口朝上,那么翻动1次杯口朝下,翻动2次杯口朝上,用你自己喜欢的方法,想一想、做一做,翻动10次后,杯口的方向朝哪个地方?19次呢?(生回答并说明理由。)

师:你还能提出其他问题吗?(生提问题并互相解决。)

(师出示两个盒子,让学生观察两个盒子里的数有什么特点。)

师:从两个盒子里各抽一张卡片,然后把它们加起来,结果是多少,礼物图中相应数字的礼物就是你的。(礼物兑奖表略。)

(在抽奖过程中学生发现:偶数加奇数都得奇数,奖品都在偶数上,所以怎么抽也抽不到奖品。)

师:是不是所有的偶数加奇数都得奇数,大家来验证一下。(小组讨论,并交流。)

(生寻找原因,总结发现:奇数+偶数=奇数。)

(学生积极想办法,得出结论:偶数+偶数=偶数、奇数+奇数=偶数。)

三、运用规律,拓展延伸

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

10389+200411387+131

268+1024 38946+3405

学生判断算式的结果是奇数还是偶数?说明理由。

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

3721-200722280-10238800-345

学生先判断结果是奇数还是偶数,再根据上面减法算式找出减法中数的奇偶性的变化规律。(小组研讨,寻找规律。)

学生汇报后,课件出示:

奇数-奇数=偶数偶数-偶数=偶数

奇数-偶数=奇数偶数-奇数=奇数

数的奇偶性教学设计教学反思数的奇偶性学情分析篇五

教材安排了几个不同的数学活动和游戏让学生体会数的奇偶变化规律,引发学生的思考,让他们在探究规律的活动中,发现解决问题的方法,从而运用这些方法去解决生活中的实际问题。

根据我对教材的理解,本课主要设计了两个活动:

活动一:通过具体情境让学生体会数的奇偶性规律,会利用数的奇偶性规律解决一些简单的实际问题。主要是让学生发现小船开始状态在南岸,“奇数次在北岸,偶数次在南岸”的规律。对学生进行列表、画图等解决问题策略的指导。

活动二:主要是运用上面的奇偶规律探索数学计算中的奇偶变化规律。

5年级学生已经有了一些探索数学问题的方法和总结规律的经验,思维比较活跃。他们能随时发现并提出数学问题。在解决问题的过程中,能根据具体问题选择有效的解决方法和策略,并能及时地总结自己的方法,在运用中积累经验。学生是伴随课程改革成长起来的,他们有较好的学习习惯,能认真倾听,敏锐地捕捉有用的信息,并能与同学有效的合作。他们好奇心和探索的欲望极强,渴望发现规律。在几年的学习中,他们的学习能力越来越强,准确的表达、恰当的评价、严肃认真的态度都很突出。估计学生可以在活动中自主探索本课的学习内容,形成认识,实现学习目标。

1.通过具体情境,让学生学会运用“列表”、“画示意图”等方法解决问题的.策略,发现规律,运用数的奇偶性规律解决生活中的一些简单问题。

2.经历探索加法中数的奇偶性变化的过程,在活动中发现加法中的奇偶的变化规律,并尝试探索减法的奇偶变化规律。

3.在活动中经历运用数学方法的过程,提高推理能力,提升数学思想。

1.学生尝试运用“列表”、“画示意图”等解决问题的策略发现规律,运用数的奇偶性规律解决生活中的一些简单问题,积累数学经验。

2.在活动中自主探索奇偶性的变化规律的策略。

1.创设情境,激发学生的学习兴趣。

2.引导学生主动探究,给予学生探索的时间和空间。

3.指导学生学会用自己的方法探索解决问题。

4.在探索规律的过程中培养学生的数学思维品质。

教学准备:课件等。

一、创设情境,激趣导入

师:前段时间老师去了黄河附近旅游,祖国山川的美景,让我留连忘返。给我留下印象最深的是黄河边上一个以摆渡为生的老人。他生活在黄河边,工作在黄河边,他那勤劳勇敢的精神,让我难以忘怀。同学们,知道什么是“摆渡”吗?(生看课件,理解“摆渡”一词。)

(做“你说我猜”的游戏,摆渡船开始状态在南岸。学生说数,教师猜测船在哪一岸?)

师:其实老师掌握了数的奇偶性的规律。(师板书:数的奇偶性。)这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!

二、观察思考,发现规律

(同桌研讨:用什么方法可以知道船在哪岸呢?)

学生汇报:1.数数的方法。随着学生的回答,师适时演示课件。2.列表方法。师演示列表方法,生完成手中的表。

让学生观察“画示意图”、“列表”两种解题方法,引导他们从中发现规律。

师:老师就是用这个规律,很快判断出小船在哪侧岸边。现在你们也想试一试吗?(教师说数,学生猜船在哪侧的岸边。)

师:你们猜得可真快,如果有人说小船开始状态在南岸,摆渡100次,小船在北岸,这种说法对吗?为什么?(指生说理由。)

师:通过解决这些问题,观察板书,你有什么发现?

(学生尝试总结出规律:开始状态在南岸,奇数次与开始状态相反,偶数次与开始状态相同。)

师:像这样的规律在我们生活中随处可见。下面我们来看翻杯子游戏。请看大屏幕:有一个杯子开始状态是杯口朝上,那么翻动1次杯口朝下,翻动2次杯口朝上,用你自己喜欢的方法,想一想、做一做,翻动10次后,杯口的方向朝哪个地方?19次呢?(生回答并说明理由。)

师:你还能提出其他问题吗?(生提问题并互相解决。)

(师出示两个盒子,让学生观察两个盒子里的数有什么特点。)

师:从两个盒子里各抽一张卡片,然后把它们加起来,结果是多少,礼物图中相应数字的礼物就是你的。(礼物兑奖表略。)

(在抽奖过程中学生发现:偶数加奇数都得奇数,奖品都在偶数上,所以怎么抽也抽不到奖品。)

师:是不是所有的偶数加奇数都得奇数,大家来验证一下。(小组讨论,并交流。)

(生寻找原因,总结发现:奇数+偶数=奇数。)

(学生积极想办法,得出结论:偶数+偶数=偶数、奇数+奇数=偶数。)

三、运用规律,拓展延伸

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

10389+200411387+131

268+1024 38946+3405

学生判断算式的结果是奇数还是偶数?说明理由。

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

3721-200722280-10238800-345

学生先判断结果是奇数还是偶数,再根据上面减法算式找出减法中数的奇偶性的变化规律。(小组研讨,寻找规律。)

学生汇报后,课件出示:

奇数-奇数=偶数偶数-偶数=偶数

数的奇偶性教学设计教学反思数的奇偶性学情分析篇六

教学目标:

知识与技能

结合具体函数了解奇偶性的含义,能利用函数的图像理解奇函数、偶函数;能判断一些简单函数的奇偶性。

过程与方法

体验奇函数、偶函数概念形成的过程,体会由形及数、数形结合的数学思想,并学会由特殊到一般的归纳推理的思维方法。

情感、态度、价值观

通过绘制和展示优美的函数图像,可以陶冶我们的情操,通过概念的形成过程,培养我们探究、推理的思维能力。

教学重点、难点:

重点

重点是奇偶性概念的理解及应用。难点

难点是奇偶性的判断与应用。

教学方法

探究式、启发式。

课堂类型:授新课

教学媒体使用:多媒体(计算机、实物投影)

教学程序与环节设计:

教学过程与操作设计: 环节

教学内容设置 师生双边互动

函数的奇偶性预习提纲

1、分别用描点法画出下列函数的图象。(1)

(2)(3)

(4)x-3-2-1 0 1 2 3

x-3-2-1 0 1 2 3

x-3-2-1 0 1 2 3

x-3-2-1 0 1 2 3

生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.

师:充分利用几何画板分析函数图象,从而得出奇函数和偶函数的定义。

偶函数的概念:

奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

探究一:函数奇偶性概念的理解

探究二:奇函数、偶函数的图象特征

奇函数的图象关于原点成中心对称图形,偶函数的图象关于y轴成轴对称图形。反之,亦成立。

探究三:函数奇偶性的判断与证明

判断函数奇偶性的方法(1)根据定义

(2)根据函数图象的对称性

师:引导学生仔细体会左边的这段文字,感悟其中的实质.

生:认真理解函数奇偶性的定义,并根据函数奇偶性的定义探索其定义域必须是关于原点对称的区间。

师:引导学生结合函数奇偶性的定义,分析函数的图像特征,以确定判定方法。

例题

判断下列函数的奇偶性:(1)

利用定义判断函数奇偶性的格式步骤:

3 作出相应结论:

例(2)

例(3)

例(4)

生:分析函数,按定义探索,完成解答,并认真思考.

生:结合例(1),思考、讨论、总结归纳得出利用定义判断函数奇偶性的格式步骤。

师:引导学生理解利用定义判断函数奇偶性的格式步骤,解决例(2)、例(3)

例(4)。

.尝 试

巩固练习

1、判断下列函数的奇偶性:

(1)

(2)

(3)

(4)

(5)

(6)

探 究 与 发 现

思考题

1、判断下列函数的奇偶性:

(1)

(2)

师:研究含参数函数的奇偶性及分段函数的奇偶性并尝试进行系统的总结.

作 业 回 馈

作业

1、课本 p43-6

2、质量监测 p23-

1、2、5、6

课 堂 小 结

1.函数的奇偶性是对整个定义域内任意一个x而言的,是一个整体性概念。

2.奇(偶)函数的定义域应满足在x轴上的对应点必须关于原点对称,即-x和x同在定义域内。

3.函数奇偶性的判定方法。

4.体会由形及数、数形结合的数学思想,以及由特殊到一般的归纳推理的思维方法。

收 获 与 体 会

说说函数奇偶性的定义,并给出判定的方法及基本步骤.

数的奇偶性教学设计教学反思数的奇偶性学情分析篇七

教材安排了几个不同的数学活动和游戏让学生体会数的奇偶变化规律,引发学生的思考,让他们在探究规律的活动中,发现解决问题的方法,从而运用这些方法去解决生活中的实际问题。

根据我对教材的理解,本课主要设计了两个活动:

活动一:通过具体情境让学生体会数的奇偶性规律,会利用数的奇偶性规律解决一些简单的实际问题。主要是让学生发现小船开始状态在南岸,“奇数次在北岸,偶数次在南岸”的规律。对学生进行列表、画图等解决问题策略的指导。

活动二:主要是运用上面的奇偶规律探索数学计算中的奇偶变化规律。

5年级学生已经有了一些探索数学问题的方法和总结规律的经验,思维比较活跃。他们能随时发现并提出数学问题。在解决问题的过程中,能根据具体问题选择有效的解决方法和策略,并能及时地总结自己的方法,在运用中积累经验。学生是伴随课程改革成长起来的,他们有较好的学习习惯,能认真倾听,敏锐地捕捉有用的信息,并能与同学有效的合作。他们好奇心和探索的欲望极强,渴望发现规律。在几年的学习中,他们的学习能力越来越强,准确的表达、恰当的评价、严肃认真的态度都很突出。估计学生可以在活动中自主探索本课的学习内容,形成认识,实现学习目标。

1.通过具体情境,让学生学会运用“列表”、“画示意图”等方法解决问题的策略,发现规律,运用数的奇偶性规律解决生活中的一些简单问题。

2.经历探索加法中数的奇偶性变化的过程,在活动中发现加法中的奇偶的变化规律,并尝试探索减法的奇偶变化规律。

3.在活动中经历运用数学方法的过程,提高推理能力,提升数学思想。

1.学生尝试运用“列表”、“画示意图”等解决问题的策略发现规律,运用数的奇偶性规律解决生活中的一些简单问题,积累数学经验。

2.在活动中自主探索奇偶性的变化规律的策略。

1.创设情境,激发学生的学习兴趣。

2.引导学生主动探究,给予学生探索的时间和空间。

3.指导学生学会用自己的方法探索解决问题。

4.在探索规律的过程中培养学生的数学思维品质。

教学准备:课件等。

一、创设情境,激趣导入

师:前段时间老师去了黄河附近旅游,祖国山川的美景,让我留连忘返。给我留下印象最深的是黄河边上一个以摆渡为生的老人。他生活在黄河边,工作在黄河边,他那勤劳勇敢的精神,让我难以忘怀。同学们,知道什么是“摆渡”吗?(生看课件,理解“摆渡”一词。)

(做“你说我猜”的游戏,摆渡船开始状态在南岸。学生说数,教师猜测船在哪一岸?)

师:其实老师掌握了数的奇偶性的规律。(师板书:数的奇偶性。)这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!

二、观察思考,发现规律

(同桌研讨:用什么方法可以知道船在哪岸呢?)

学生汇报:1.数数的方法。随着学生的回答,师适时演示课件。2.列表方法。师演示列表方法,生完成手中的表。

让学生观察“画示意图”、“列表”两种解题方法,引导他们从中发现规律。

师:老师就是用这个规律,很快判断出小船在哪侧岸边。现在你们也想试一试吗?(教师说数,学生猜船在哪侧的岸边。)

师:你们猜得可真快,如果有人说小船开始状态在南岸,摆渡100次,小船在北岸,这种说法对吗?为什么?(指生说理由。)

师:通过解决这些问题,观察板书,你有什么发现?

(学生尝试总结出规律:开始状态在南岸,奇数次与开始状态相反,偶数次与开始状态相同。)

师:像这样的规律在我们生活中随处可见。下面我们来看翻杯子游戏。请看大屏幕:有一个杯子开始状态是杯口朝上,那么翻动1次杯口朝下,翻动2次杯口朝上,用你自己喜欢的方法,想一想、做一做,翻动10次后,杯口的方向朝哪个地方?19次呢?(生回答并说明理由。)

师:你还能提出其他问题吗?(生提问题并互相解决。)

(师出示两个盒子,让学生观察两个盒子里的数有什么特点。)

师:从两个盒子里各抽一张卡片,然后把它们加起来,结果是多少,礼物图中相应数字的礼物就是你的。(礼物兑奖表略。)

(在抽奖过程中学生发现:偶数加奇数都得奇数,奖品都在偶数上,所以怎么抽也抽不到奖品。)

师:是不是所有的偶数加奇数都得奇数,大家来验证一下。(小组讨论,并交流。)

(生寻找原因,总结发现:奇数+偶数=奇数。)

(学生积极想办法,得出结论:偶数+偶数=偶数、奇数+奇数=偶数。)

三、运用规律,拓展延伸

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

10389+200411387+131

268+1024 38946+3405

学生判断算式的结果是奇数还是偶数?说明理由。

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

3721-200722280-10238800-345

学生先判断结果是奇数还是偶数,再根据上面减法算式找出减法中数的奇偶性的变化规律。(小组研讨,寻找规律。)

学生汇报后,课件出示:

奇数-奇数=偶数偶数-偶数=偶数

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新数的奇偶性教学设计教学反思 数的奇偶性学情分析精选(7篇) 文件夹
复制